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Abstract

We present a mechanism to automatically gather symbolic
performance-relevant operation counts from GPU kernels ex-
pressed in the Loopy programming system, apply these counts
in a simple, linear model of kernel run time.
•We use a series of ‘performance-instructive’ kernels to fit
the parameters of a unified model to the performance
characteristics of GPU hardware from multiple hardware
generations and vendors.

•We evaluate the model’s predictive power an array of
computational kernels relevant to scientific computing.

•Our simple, vendor- and GPU-type-independent
model achieves accuracy comparable to that of previously
published work using hardware-specific models.

Modeling Execution Time

Model execution time as linear combination of kernel properties

Twall(n) ≈
Nproperties∑

i=1
αipi(n),

where n is a parameter set governing problem size and αi is
the weight (run time cost) for the i th property.

Properties

What contributes linearly to kernel execution time?

Three execution cost categories

Arithmetic Data Motion Synchronization

Op. type Data type Direction StrideMemory type

Five cost factors used to sort kernel stats into properties

Can a linear model account for nonlinearities? Yes!
Example: On a GPU, global loads and stores may overlap.
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Runtime is nonlinear in load/store count. We can model this
nonlinear relationship with a combination of three properties:

Want: Tdata = tloads + tstores −min(tloads, tstores)
Model: Tdata ≈ αlnloads + αsnstores + αmmin(nloads,nstores)

We expect weights 0 < αl ≈ αs ≈ −αm

Measurement Kernels

Property costs are revealed through execution of carefully cho-
sen measurement kernels:
•Vector addition (add four vectors)
•Vector copy; store; stride-{1, 2} scale and add
• Filled stride-{2, 3} vector sum reduction
(stride-{2, 3} access, but use all data)

•Non-square {tiled, naive} matrix multiplication
•Transpose (with and without prefetching)
•One arithmetic kernel per arithmetic property
• Empty kernel

Property Matrix

One column per property
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Divide properties by measurement kernel run times so linear
least squares finds weights minimizing relative error.

Loo.py: Transformation-based code generation for
GPUs and CPUs

Loo.py, a programming system em-
bedded in Python, meets the chal-
lenge of heterogeneous com-
puting by defining a data model
for array-style computations and a
library of transformations that
operate on this model.
Transformations: Loop tiling, instruction-level parallelism, vec-
torization, unrolling, prefetching, AoS↔SoA, and more!

Specify mathematical intent:

knl = make_kernel(
"{ [i,j]: 0<=i<n and 0<=j<m }", # domain
"out[i,j] = 2*a[i,j]+b[i,j]", # instr. 1
assumptions="n,m >=1")

Specify transformations:

knl = split_iname(knl, "i", 128,
outer_tag="g.1", inner_tag="l.1")

knl = split_iname(knl, "j", 128,
outer_tag="g.0", inner_tag="l.0")

Gathering Kernel Statistics

1. Recursively traverse instruction expression tree of a
Loopy kernel, counting stats for single instruction

2. Determine how many times instruction executes

Statistics dict:

{’f32s1L’: 2*n*m,
’f32s1S’: n*m,
’f32-mul’: n*m,
’f32-sum’: n*m}

Instruction 1 (above) contains
• 2 32-bit stride-1 float loads
• 1 32-bit stride-1 float store
• 1 32-bit float multiplication
• 1 32-bit float addition
and executes n ∗m times.

Applications

In performance optimization, aid
in exploring search space of pro-
gram transformations.
In algorithm design, identify
largest contributors to compu-
tational cost.

In load balancing, accurate
predictions of workload run times
enable better scheduling
decisions.

In machine bringup and
qualification, our measurement
procedure can expose bottlenecks
and unexpected interactions, and help
compare processor architectures.

Contributions

•A set of hardware-independent kernel properties that
account for kernel run times with considerable accuracy.

•A procedure for automatic extraction of kernel
statistics as piecewise quasi-polynomials.

•A set of measurements and a fitting procedure to, in a
black box and unassisted fashion, determine hardware-
specific weights for each property.
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Initial Results (General)
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Skinny Matrix Multiplication
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N-Body
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Actual vs. predicted execution time; 4 test kernels on 4 GPUs

Nvidia Nvidia Nvidia AMD
GTX Tesla Tesla Radeon Cross-GPU

Kernel Titan X C2070 K40c R9 Fury Geo-Mean
Finite Diff 0.30 0.10 0.01 0.63 0.11
Skinny MM 0.08 0.10 0.13 0.28 0.13
N-Body 0.32 0.27 0.54 0.76 0.43
Convolution 0.10 0.13 0.03 0.23 0.10
Cross-Kernel
Geo-Mean 0.16 0.14 0.06 0.42
Geometric means of relative error in model prediction

DG Framework

Grudge: Purpose-built description language for DG operators
•Takes description of PDE; "compiles" it into OpenCL code
• Focus on performance rather than generality
•Built on top of loo.py; kernels transformable at runtime

Example DG Kernel

Weak form: 0 =
∫

k
utϕ− F (u) · ∇ϕx +

∫
∂k

(n̂ · F )∗ϕSx

∂tuk = −
∑
ν

D∂ν,k[F(uk)] + Lk[n̂ · F (uk)− (n̂ · F )∗]|A⊂∂k

Element-local differentiation: derivative mats× field data

Local Templated
Derivative
Matrices

Local Templated
Derivative
Matrices

Local Templated
Derivative
Matrices

Np

Np

K

Field Data

Many optimization options. Best use of limited local mem?
•Prefetch tiles from deriv mats? Field data? Both? Neither?

Use performance model to tune at runtime!

Initial Results (DG Local Differentiation Kernel)
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DG-Diff Kernel Configurations (Titan X)
Actual
Predicted
Fetch both
Fetch diff
Fetch field

Model accuracy for 3
configurations of DG
differentiation kernel
on Titan X GPU.

Geo-mean error: .06

Next Steps

•Achieve cross-GPU model accuracy for common DG kernels
•Additional mem access properties, measurement kernels
• Smarter properties, e.g., group global mem access by bus
widths touched

• Implement automated performance tuning in Grudge
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