Black-Box Kernel-Level Performance Modeling for Tuning DG on GPUs

James Stevens <jdsteve2@illinois.edu> Andreas Klöckner <andreask@illinois.edu>

Department of Computer Science · University of Illinois at Urbana-Champaign · Urbana, IL

Abstract

We present a mechanism to **automatically** gather symbolic performance-relevant operation counts from GPU kernels expressed in the Loopy programming system, apply these counts in a **simple**, **linear model** of kernel run time.

- We use a series of 'performance-instructive' kernels to **fit** the parameters of a unified model to the performance characteristics of GPU hardware from **multiple hardware** generations and vendors.
- We evaluate the model's predictive power an array of computational kernels relevant to scientific computing.
- Our simple, vendor- and GPU-type-independent model achieves accuracy comparable to that of previously published work using *hardware-specific* models.

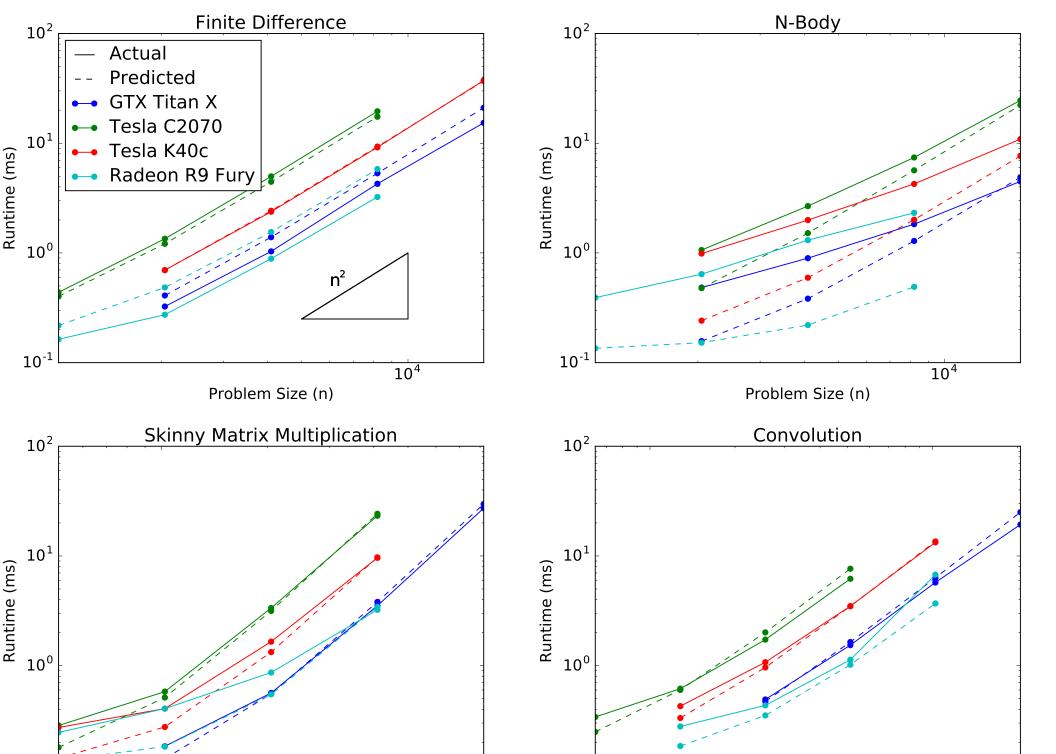
Loo.py: Transformation-based code generation for **GPUs and CPUs**

Loo.py, a programming system embedded in Python, meets the challenge of heterogeneous computing by defining a data model for array-style computations and a library of **transformations** that operate on this model.

Specify **mathematical intent**:

= make_kernel(

knl



6

Modeling Execution Time

Model execution time as linear combination of kernel properties

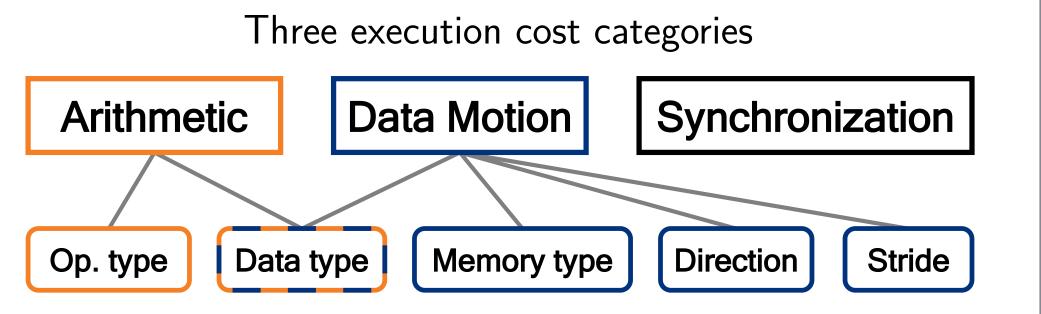
$$\mathcal{N}_{ ext{properties}}$$

 $\mathcal{T}_{ ext{wall}}(\mathbf{n}) pprox \sum_{i=1}^{N_{ ext{properties}}} lpha_{i} p_{i}(\mathbf{n}),$

where **n** is a parameter set governing problem size and α_i is the weight (run time cost) for the *i*th property.

Properties

What contributes linearly to kernel execution time?



Five cost factors used to sort kernel stats into properties

"out[i,j] = 2*a[i,j]+b[i,j]", # instr. 1 assumptions="n,m >=1")

"{ [i,j]: 0<=i<n and 0<=j<m }", # domain

Transformations: Loop tiling, instruction-level parallelism, vec-

torization, unrolling, prefetching, $AoS \leftrightarrow SoA$, and more!

Specify **transformations**:

knl = split_iname(knl, "i", 128, outer_tag="g.1", inner_tag="l.1") knl = split_iname(knl, "j", 128, outer_tag="g.0", inner_tag="l.0")

Gathering Kernel Statistics

Recursively traverse **instruction expression tree** of a Loopy kernel, counting stats for single instruction 2. Determine how many times instruction executes

Instruction 1 (above) contains • 2 32-bit stride-1 float loads • 1 32-bit stride-1 float store • 1 32-bit float multiplication • 1 32-bit float addition and executes n * m times.

Statistics dict:

In **load balancing**, accurate

enable **better scheduling**

decisions.

predictions of workload run times

{'f32s1L': 2*n*m, 'f32s1S': n*m, 'f32-mul': n*m, 'f32-sum': n*m}

Problem Size (n) Problem Size (n)

Actual vs. predicted execution time; 4 test kernels on 4 GPUs

	Nvidia	Nvidia	Nvidia	AMD	
	GTX	Tesla	Tesla	Radeon	Cross-GPU
Kernel	Titan X	C2070	K40c	R9 Fury	Geo-Mean
Finite Diff	0.30	0.10	0.01	0.63	0.11
Skinny MM	0.08	0.10	0.13	0.28	0.13
N-Body	0.32	0.27	0.54	0.76	0.43
Convolution	0.10	0.13	0.03	0.23	0.10
Cross-Kernel					
Geo-Mean	0.16	0.14	0.06	0.42	
Geo-Mean	0.16	0.14	0.06	0.42	

Geometric means of relative error in model prediction

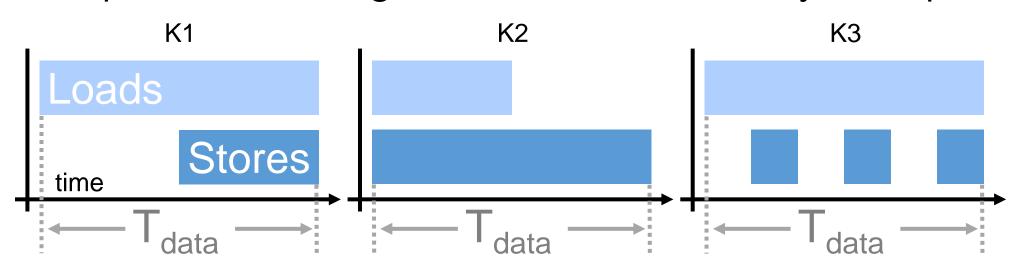
DG Framework

Grudge: Purpose-built description language for DG operators

• Takes description of PDE; "compiles" it into OpenCL code • Focus on performance rather than generality

• Built on top of **loo.py**; kernels **transformable** at runtime

Can a linear model account for nonlinearities? Yes! Example: On a GPU, global loads and stores may overlap.



Runtime is nonlinear in load/store count. We can model this nonlinear relationship with a combination of three properties:

 $T_{\text{data}} = t_{\text{loads}} + t_{\text{stores}} - \min(t_{\text{loads}}, t_{\text{stores}})$ Want: $T_{\text{data}} \approx \alpha_I n_{\text{loads}} + \alpha_s n_{\text{stores}} + \alpha_m \min(\mathbf{n}_{\text{loads}}, \mathbf{n}_{\text{stores}})$ Model:

We expect weights $0 < \alpha_I \approx \alpha_s \approx -\alpha_m$

Measurement Kernels

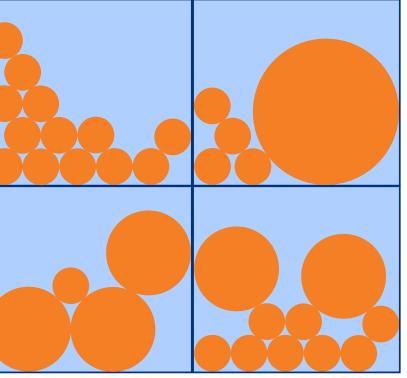
Property costs are revealed through execution of carefully chosen measurement kernels:

• Vector addition (add four vectors) • Vector copy; store; stride-{1, 2} scale and add • Filled stride-{2, 3} vector sum reduction (stride-{2, 3} access, but use all data) • Non-square {tiled, naive} matrix multiplication • Transpose (with and without prefetching) • One arithmetic kernel per arithmetic property Empty kernel

Applications

In **performance optimization**, aid in exploring search space of program transformations.

In algorithm design, identify ⊿ largest contributors to computational cost.



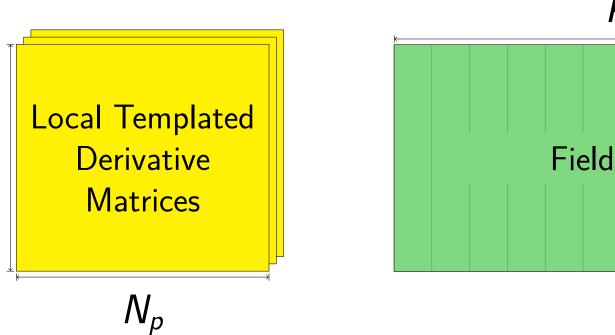
In machine bringup and qualification, our measurement procedure can **expose bottlenecks** and unexpected interactions, and help compare processor architectures.

Contributions

 N_{p}

Weak form: $0 = \int_{L} u_t \varphi - F(u) \cdot \nabla \varphi x + \int_{\partial_k} (\hat{n} \cdot F)^* \varphi S_x$ $\partial_t u^k = -\sum \mathbf{D}^{\partial_{\nu}, \mathbf{k}} [\mathbf{F}(\mathbf{u}^k)] + L^k [\hat{n} \cdot F(u^k) - (\hat{n} \cdot F)^*]|_{A \subset \partial_k}$

Element-local differentiation: derivative mats × field data

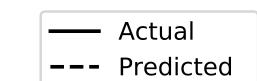


Field Data

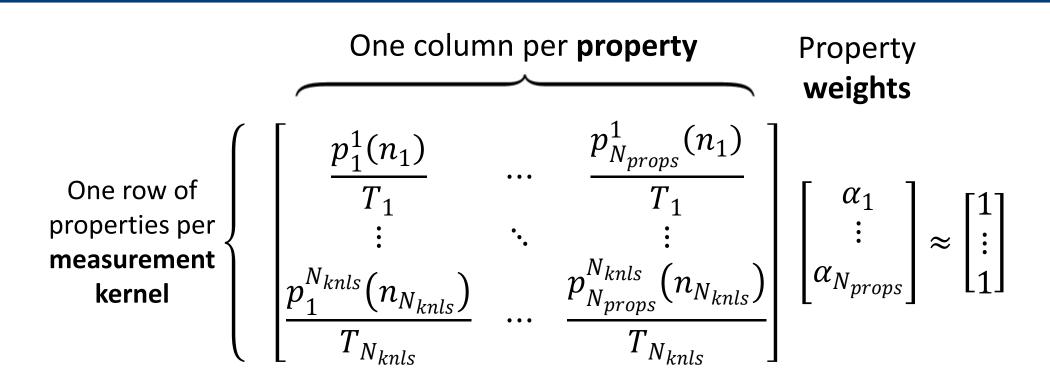
Many optimization options. Best use of limited local mem? • Prefetch tiles from deriv mats? Field data? Both? Neither? Use performance model to tune at runtime!

Initial Results (DG Local Differentiation Kernel)

DG-Diff Kernel Configurations (Titan X)



Property Matrix

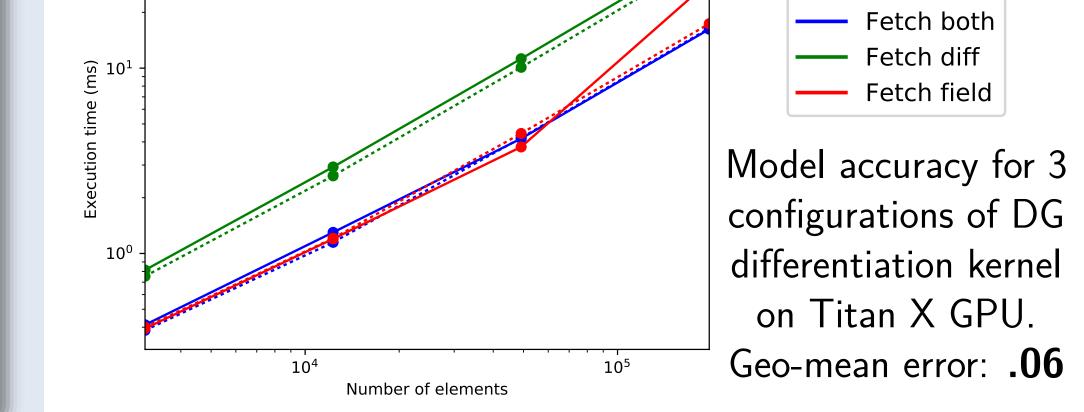


Divide properties by measurement kernel run times so linear least squares finds weights **minimizing relative error**.

• A set of hardware-independent kernel properties that account for kernel run times with considerable accuracy. • A procedure for **automatic extraction of kernel** statistics as piecewise quasi-polynomials. • A set of **measurements** and a **fitting procedure** to, in a black box and unassisted fashion, determine hardwarespecific weights for each property.

References

[1] Klöckner, Andreas. "Loo.Py: Transformation-based Code Generation for GPUs and CPUs" Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY'14, 82:82-82:87.



Next Steps

• Achieve cross-GPU model accuracy for common DG kernels • Additional mem access properties, measurement kernels • Smarter properties, e.g., group global mem access by bus widths touched

• Implement automated performance tuning in Grudge

Department of Computer Science · University of Illinois at Urbana-Champaign · Urbana, IL

http://www.cs.illinois.edu