
POC: Dr. Daniel B. Weber
559th SMXS/MXDEF
Phone: 405-736-4058
Email: daniel.weber@tinker.af.mil

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

TEAM TINKER

OKLAHOMA CITY

AIR LOGISTICS COMPLEX

Using a GPU to Compute the

Advection and Computational

Mixing Terms of a Numerical

Weather Prediction Model

Date: 3 October 2012

2

Background

• Presenters: Dan Weber and Jim Stevens

– 76 Software Maintenance Group at Tinker AFB

• Mission: maintain software on weapon systems

– Support the warfighter!

• Flight and radar simulation, weather prediction

– Real time systems

• Supercomputing resources 660core/3.5 TFLOPS

– Recycled computer systems

3

Outline

• Sample application – weather prediction model

– History of optimization efforts

• A look at the GPU

– Can it help reduce real time computing requirements?

• GPU programming approach

– There are many details!

– Use some of the old and some of the new….

• Our case study and results – Jim Stevens

• Road map for future work

Weather Model

• U,V,W represent winds

• Theta represents

 temperature

• represents pressure

• T – Time

• X – east west direction

• Y – north south direction

• Z – vertical direction

• Turb – turbulence terms (what
can’t be measured/predicted)

• S – Source terms,
condensation, evaporation,
heating, cooling

• D – numerical smoothing

• f – Coriolis force (earth’s
rotation)

uup turbDwffv
x

c
z

u
w

y

u
v

x

u
u

t

u

vvp turbDfu
y

c
z

v
w

y

v
v

x

v
u

t

v

wwp turbDufg
z

c
z

w
w

y

w
v

x

w
u

t

w

 ''

SturbD

z
w

y
v

x
u

t

dt

d

c

R

z

w

y

v

x

u

c

R

z
w

y
v

x
u

t v

d

v

d

)(

Navier Stokes Equations

Others variables include soil, cloud and precipitation processes

5

Past Optimization Attempts

• Vector processors: 50-90% peak – fast memory

– Removing operators from the code – loop merging

– Loop Fusion – helps the compiler vectorize code

• Scalar: 10-60% peak – memory bound

– Loop merging – reduce number of loads and stores

– Supernoding/Tiling

• Data/cache reuse

– Rearrange computations for maximum data reuse

• References:

– OSCER Symposium (Weber: 2005,2006,2008)

– Linux Cluster Institute (Weber and Neeman: 2006)

6

Past CPU Results

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Xeon H'town 2.0 Ghz Xeon C'town 2.3 Ghz Opteron 2.6 Ghz

M
fl

o
p

s

Chip Type

Benchmarks (Single Core, 4th Order 72x72x53)

peak revised

current

7

CPU - GPU Comparison

• Single core CPU’s capable of ~10 GFLOPS/sec

• Multicore capable of ~100’s GFLOPS/sec

• But CPU memory bandwidth severely restricts

real world performance of multicore CPU’s for

memory intensive applications

• GPU’s offer >1 TFLOPS/sec potential

• The coding style for GPGPU’s is very different

• “New language” (CUDA) needed for

programming on GPU

• But since the potential exists, we try…

8

NVIDIA Tesla C1060 GPU

• Tesla C1060 GPU has 240 cores

• 30 Multiprocessors (MP)

– 8 cores each

• Shared memory on each MP

– Accessible to all 8 cores

• Goal: Utilize all GPU cores

– >80% core utilization on loops

9

GPU Memory Components

• Global Memory

– Main memory, 4 GB for the NVIDIA Tesla C1060

– About 200 cycles to access (vs. 50 cycles for a CPU)

• Registers

– 64KB per multiprocessor (vs. 512 B for Pentium 4 CPU)

– 1 cycle to access

• Shared registers (AKA “shared memory”)

– 16 KB per multiprocessor

– Can be allocated for each block of threads

– All threads within block can access all data in shared

registers, even if another thread fetched it

– Allows for data reuse – this is important

10

General CUDA Program Format

• Step 1 – copy data from main memory to GPU

global memory (from host to device)

• Step 2 – threads run code inside kernel

function

– Each thread fetches some data from global memory

and stores it in registers

– Each thread performs computations

– Each thread stores a result in global memory

• Step 3 – copy results from device back to host

• CUDA – Compute Unified Device Architecture

11

Learning CUDA

• GPGPU programming is hard (at first)

– Learning takes a lot of time and effort

– Understanding example programs requires knowing

terminology

– Understanding the terminology requires example

programs

– So where do you start?

• Basic terminology, simple example

– Disclaimer: this is not a CUDA class

12

CUDA Threads

• Thread = an single instance of computation

– One thread per processor-core at a time

• CUDA allows you to specify the thread

organization, count, and indexing

– You control which threads are responsible for which

portion of the task

13

Simple CUDA example

• We want to increment each element in a 1-

dimensional array of integers

• CPU Approach
1. Create/initialize array

2. Perform loop

do i = 1,n

 array(i) = array(i)+1

end do

• GPU Approach
1. Create/initialize array

2. Copy array data to GPU memory

3. Create n threads

4. Have each thread do the following:

array[threadIDX] =

 array[threadIDX] + 1

5. Copy array back to host

• threadIDX is the thread’s unique thread index

• Threads may execute in any order

14

Simple CUDA Example

Any questions at this point?

Weather Model Equations

• U,V,W represent winds

• Theta represents

 temperature

• represents pressure

• T – Time

• X – east west direction

• Y – north south direction

• Z – vertical direction

• Turb – turbulence terms (what
can’t be measured/predicted)

• S – Source terms,
condensation, evaporation,
heating, cooling

• D – numerical smoothing

• f – Coriolis force (earth’s
rotation)

uup turbDwffv
x

c
z

u
w

y

u
v

x

u
u

t

u

vvp turbDfu
y

c
z

v
w

y

v
v

x

v
u

t

v

wwp turbDufg
z

c
z

w
w

y

w
v

x

w
u

t

w

 ''

SturbD

z
w

y
v

x
u

t

dt

d

c

R

z

w

y

v

x

u

c

R

z
w

y
v

x
u

t v

d

v

d

)(

16

Solving Weather Model Equations

DO k = 3,nz-2

 DO j = 3,ny-2

 DO i = 3,nx-2

 u(i,j,k,2)= -u(i,j,k,2)*... (150 operations)
 ! compute uadv u (... 18 operations ...)
 ! compute vadv u (... 16 operations ...)
 ! compute wadv u (... 16 operations ...)
 ! compute cmixx u (... 33 operations ...)
 ! compute cmixy u (... 33 operations ...)
 ! compute cmixz u (... 33 operations ...)

 v(i,j,k,2)= -v(i,j,k,2)*... (148 operations)

 w(i,j,k,2)= -w(i,j,k,2)*... (100 operations)

 p(i,j,k,2)= -p(i,j,k,2)*... (49 operations)

 pt(i,j,k,2)= -pt(i,j,k,2)*... (148 operations)

 595 operations total

• CPU Version • Normally, these computations

are done separately, why

combine them?

• Data reuse!

17

Stencil Data Requirements

u(i,j,k,2)= -u(i,j,k,2)*rk_constant1(n)

! compute uadv u

 +tema4*((u(i,j,k,1)+u(i+2,j,k,1))
 *(u(i+2,j,k,1)-u(i,j,k,1))
 +(u(i,j,k,1)+u(i-2,j,k,1))
 *(u(i,j,k,1)-u(i-2,j,k,1)))
 -temb4*((u(i+1,j,k,1)+u(i,j,k,1))
 *(u(i+1,j,k,1)-u(i,j,k,1))
 +(u(i,j,k,1)+u(i-1,j,k,1))
 *(u(i,j,k,1)-u(i-1,j,k,1)))

• Subset of calculation – u array – uadv u

• Note: For every (i,j,k) element, this part of the update

requires the value at (i,j,k), as well as 4 other values –

the two on either side of (i,j,k) in the i direction: (i-2,j,k)

(i-1,j,k) (i+1,j,k) (i+2,j,k)

U Calculation – elements needed

Arrays

Direction

of

adjacent

values

uadv u u i

vadv u u, v j

wadv u u, w k

cmixx u u, ubar i

cmixy u u, ubar j

cmixz u u, ubar k

i

j
k

ALL elements needed to update u(i,j,k)

u

18

19

Global Memory Access

• Normal registers - each thread will fetch five

elements from global memory

– That’s inefficient - each element would be fetched 5

times by 5 different threads

• Shared registers - Each thread copies one

element into a “shared” array (stored in shared

registers) that can be accessed by all threads

– Shared arrays allocated/accessed within block

• Then each thread only performs one global

fetch and can access all 5 elements it needs!

20

Shared Memory Limitation

• Limited to 16 KB of shared registers

– We’re processing gigabytes of data

– Need to break up the problem into smaller pieces

that can be moved in and out of shared memory

efficiently

• What else do we need to do to get maximum

performance?

21

Strategies for Performance

• Make sure global memory fetches are

coalescing

– When adjacent threads access adjacent locations in

global memory, the fetches are “coalesced”

automatically into a single large fetch

– Absolutely necessary for good performance

– Number 1 priority

22

Strategies for Performance

• Reuse as much data as possible

– By using shared registers

• Break problem into pieces that are small enough

to fit into shared memory

– By having threads perform cleverly designed loops

• Not using shared registers

• Loops within threads that solve the following

problem…

Data Reuse Through Looping

• To maximize coalescence, we need blocks of

threads that are “long” in the i-direction.

• However, because of our size limitation on

shared memory, this forces blocks to be

“narrow” in the other two dimensions.

– 64x1x1, for example

• This is a problem for the parts of the calculation

that require neighboring data in the j and k

directions

– Can we still reuse data these parts of the calculation?

– Yes! Partially.

10/4/2012

Data Reuse: Looping + Shared Registers

• Use shared

registers to reuse

data needed for

“i-calculations”

• Have each thread

loop in the j-

direction to reuse

data needed for

the “j-

calculations”

in registers

i
k

j

24

threads

• Each element is only fetched

once from global memory, and

then used nine times (see

animation)

shared registers

25

Other Strategies for Performance

• “Hide” memory fetches with computations

– Structure kernel so that data is being fetched while

computations are being performed (the scheduler

will try to help with this)

• Choose block dimensions that allow for

maximum thread-scheduling efficiency

– Multiples of 32 threads

– Blocks that are “longer” in one dimension (i) to

facilitates maximum coalescence

26

Strategies for Performance

• Designing your program so that it uses all of

these strategies is difficult

– It’s a bit like trying to design a car that is luxurious,

safe, fast, agile, reliable, practical, inexpensive,

visually appealing, and fuel efficient all at the same

time

• There are tradeoffs - you have to find the right

balance

27

Results

3.1

181

255

8.3 6.5
0

50

100

150

200

250

300

CPU
(All 595 Operations)

GPU
(All 595 Operations)

GPU
(399 Operation Subset)

Speed (GFLOP/s)

Excluding Host-
Device Mem.
Transfer

Including Host-
Device Mem.
Transfer

28

Evaluating Results

• Is that good? How do we know?

• Estimate theoretical hardware peak

– 933 GFLOP/s for single precision

– But we can’t use some of the hardware

• No texturing, reduces peak by about 33%

– This number assumes we’re taking advantage of the

fused multiply-add instruction, but our computation

doesn’t have many multiply-adds

• Reduces peak by about 50%

– So achievable hardware peak is about 311 GFLOP/s

– Kernel runs at 82% of peak, not bad!!!

29

Estimating Application Speed Limit

• Determine theoretical application “speed limit”

• Based on global memory bandwidth and

algorithm memory requirements

– Even if our algorithm has 100% data reuse and we

completely hide all operations behind data fetches,

we would still need to fetch each element of data

from global memory one time, and write our results

back

– Compute time required to move data

T = (data moved) / (global memory bandwidth)

– Compute speed limit (FLOP/s)

ASL = (Algorithm FLOP Count) / T

30

Application Speed Limit

• 786 GFLOP/s for the 399 operation subset (Tesla C1060 GPU)

– Because this computation has such a high

operation-to-memory-fetch ratio (~30:1), this “speed

limit” is high

– This is higher than our achievable hardware peak,

which means our performance might increase if the

GPU had faster multiprocessors

– Suggests that our program is not memory bound

• This peak can be calculated before writing any

code to find out if a particular computation is a

good candidate for GPU acceleration

– Increment array example: 12.8 GFLOP/s = poor

candidate

31

Good Candidates for GPU

Acceleration

• Easily parallelizable

– Same set of independent operations are performed

on each element in a domain (SIMD)

– These operations can execute in any order

• Spatial locality

– Individual operations require data that is nearby in

the domain

– Facilitates data reuse

• High operation-to-memory-fetch ratio

– Calculate theoretical “speed limit” based on

algorithm memory requirements and global memory

bandwidth

32

Potential Future Work

• Add other big time step computations

– Turbulence, coriolis, buoyancy

– Cloud physics

– Radiation

• Include small time step

– Texture/interpolators for the pressure gradient

• Parallel version (MPI)

33

Resources for Learning CUDA

• Programming Massively Parallel Processors: A

Hands-On Approach by Kirk and Hwu

• Online lecture slides and audio

– ECE 498 AL (Univ. of Illinois)

• NVIDIA CUDA Programming Guide

• Portland Group CUDA Fortran Programming

Guide and Reference

• Forums

– Portland group

– NVIDIA

TEAM TINKER

