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Background 

• Presenters: Dan Weber and Jim Stevens 

– 76 Software Maintenance Group at Tinker AFB 

• Mission: maintain software on weapon systems 

– Support the warfighter! 

• Flight and radar simulation, weather prediction 

– Real time systems 

• Supercomputing resources 660core/3.5 TFLOPS 

– Recycled computer systems 
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Outline 

• Sample application – weather prediction model 

– History of optimization efforts 

• A look at the GPU 

– Can it help reduce real time computing requirements? 

• GPU programming approach 

– There are many details! 

– Use some of the old and some of the new…. 

• Our case study and results – Jim Stevens 

• Road map for future work 



Weather Model 

• U,V,W represent winds 

 

• Theta      represents  

      temperature 

•         represents pressure 

• T – Time 

• X – east west direction 

• Y – north south direction 

• Z – vertical direction 

• Turb – turbulence terms (what 
can’t be measured/predicted) 

• S – Source terms, 
condensation, evaporation, 
heating, cooling 

• D – numerical smoothing  

• f – Coriolis force (earth’s 
rotation) 
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Navier Stokes Equations 

Others variables include soil, cloud and precipitation processes 
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Past Optimization Attempts 

• Vector processors:  50-90% peak – fast memory 

– Removing operators from the code – loop merging 

– Loop Fusion – helps the compiler vectorize code 

• Scalar:  10-60% peak – memory bound 

– Loop merging – reduce number of loads and stores 

– Supernoding/Tiling 

• Data/cache reuse 

– Rearrange computations for maximum data reuse 

• References:  

– OSCER Symposium (Weber: 2005,2006,2008) 

– Linux Cluster Institute (Weber and Neeman: 2006) 
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Past CPU Results 
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CPU - GPU Comparison 

• Single core CPU’s capable of ~10 GFLOPS/sec 

• Multicore capable of ~100’s GFLOPS/sec 

• But CPU memory bandwidth severely restricts 

real world performance of multicore CPU’s for 

memory intensive applications 

• GPU’s offer >1 TFLOPS/sec potential 

• The coding style for GPGPU’s is very different 

• “New language” (CUDA) needed for 

programming on GPU 

 

• But since the potential exists, we try… 
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NVIDIA Tesla C1060 GPU 

• Tesla C1060 GPU has 240 cores 

• 30 Multiprocessors (MP) 

– 8 cores each  

• Shared memory on each MP 

– Accessible to all 8 cores 

 

• Goal: Utilize all GPU cores 

– >80% core utilization on loops 
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GPU Memory Components 

• Global Memory 

– Main memory, 4 GB for the NVIDIA Tesla C1060 

– About 200 cycles to access (vs. 50 cycles for a CPU) 

• Registers 

– 64KB per multiprocessor (vs. 512 B for Pentium 4 CPU) 

– 1 cycle to access 

• Shared registers (AKA “shared memory”) 

– 16 KB per multiprocessor 

– Can be allocated for each block of threads 

– All threads within block can access all data in shared 

registers, even if another thread fetched it 

– Allows for data reuse – this is important 
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General CUDA Program Format 

• Step 1 – copy data from main memory to GPU 

global memory (from host to device) 

• Step 2 – threads run code inside kernel 

function 

– Each thread fetches some data from global memory 

and stores it in registers 

– Each thread performs computations 

– Each thread stores a result in global memory 

• Step 3 – copy results from device back to host 

 

• CUDA – Compute Unified Device Architecture 
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Learning CUDA 

• GPGPU programming is hard (at first) 

– Learning takes a lot of time and effort 

– Understanding example programs requires knowing 

terminology 

– Understanding the terminology requires example 

programs 

– So where do you start? 

• Basic terminology, simple example 

– Disclaimer: this is not a CUDA class 
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CUDA Threads 

• Thread = an single instance of computation 

– One thread per processor-core at a time  

• CUDA allows you to specify the thread 

organization, count, and indexing 

– You control which threads are responsible for which 

portion of the task 
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Simple CUDA example 

• We want to increment each element in a 1-

dimensional array of integers 

• CPU Approach 
1. Create/initialize array 

 

 

2. Perform loop 

do i = 1,n 

     array(i) = array(i)+1 

end do 

 

 

• GPU Approach 
1. Create/initialize array 

2. Copy array data to GPU memory 

3. Create n threads 

4. Have each thread do the following: 
 

array[threadIDX] = 

                          array[threadIDX] + 1 
 

5. Copy array back to host 
 

• threadIDX is the thread’s unique thread index 

• Threads may execute in any order 

 



14 

Simple CUDA Example 

 

 

 

 

Any questions at this point? 



Weather Model Equations 

• U,V,W represent winds 

 

• Theta      represents  

      temperature 

•         represents pressure 

• T – Time 

• X – east west direction 

• Y – north south direction 

• Z – vertical direction 

• Turb – turbulence terms (what 
can’t be measured/predicted) 

• S – Source terms, 
condensation, evaporation, 
heating, cooling 

• D – numerical smoothing  

• f – Coriolis force (earth’s 
rotation) 
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Solving Weather Model Equations 

DO k = 3,nz-2 

  DO j = 3,ny-2 

    DO i = 3,nx-2 

 

      u(i,j,k,2)= -u(i,j,k,2)*...     ( 150 operations ) 
      !  compute uadv u           (... 18 operations ...) 
      !  compute vadv u           (... 16 operations ...) 
      !  compute wadv u           (... 16 operations ...) 
      !  compute cmixx u          (... 33 operations ...) 
      !  compute cmixy u          (... 33 operations ...) 
      !  compute cmixz u          (... 33 operations ...) 

 

      v(i,j,k,2)= -v(i,j,k,2)*...     ( 148 operations ) 

      w(i,j,k,2)= -w(i,j,k,2)*...     ( 100 operations ) 

      p(i,j,k,2)= -p(i,j,k,2)*...     ( 49 operations  ) 

      pt(i,j,k,2)= -pt(i,j,k,2)*...   ( 148 operations ) 
 

                                      595 operations total 
 

• CPU Version • Normally, these computations 

are done separately, why 

combine them?  

• Data reuse! 
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Stencil Data Requirements 

u(i,j,k,2)= -u(i,j,k,2)*rk_constant1(n) 
 
!  compute uadv u 
 
    +tema4*( (u(i,j,k,1)+u(i+2,j,k,1)) 
            *(u(i+2,j,k,1)-u(i,j,k,1)) 
            +(u(i,j,k,1)+u(i-2,j,k,1)) 
            *(u(i,j,k,1)-u(i-2,j,k,1)) ) 
    -temb4*( (u(i+1,j,k,1)+u(i,j,k,1)) 
            *(u(i+1,j,k,1)-u(i,j,k,1)) 
            +(u(i,j,k,1)+u(i-1,j,k,1)) 
            *(u(i,j,k,1)-u(i-1,j,k,1)) ) 
 

• Subset of calculation – u array – uadv u 

• Note: For every (i,j,k) element, this part of the update 

requires the value at (i,j,k), as well as 4 other values – 

the two on either side of (i,j,k) in the i direction: (i-2,j,k) 

(i-1,j,k) (i+1,j,k) (i+2,j,k) 



U Calculation – elements needed 

Arrays 

Direction 

of 

adjacent 

values 

uadv u  u i 

vadv u u, v j 

wadv u u, w k 

cmixx u u, ubar i 

cmixy u u, ubar j 

cmixz u u, ubar k 

i 

j 
k 

ALL elements needed to update u(i,j,k) 

u 

18 
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Global Memory Access 

• Normal registers - each thread will fetch five 

elements from global memory 

– That’s inefficient - each element would be fetched 5 

times by 5 different threads 

 

• Shared registers - Each thread copies one 

element into a “shared” array (stored in shared 

registers) that can be accessed by all threads 

– Shared arrays allocated/accessed within block 

• Then each thread only performs one global 

fetch and can access all 5 elements it needs! 
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Shared Memory Limitation 

• Limited to 16 KB of shared registers 

– We’re processing gigabytes of data 

– Need to break up the problem into smaller pieces 

that can be moved in and out of shared memory 

efficiently 

 

• What else do we need to do to get maximum 

performance? 
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Strategies for Performance 

• Make sure global memory fetches are 

coalescing 

– When adjacent threads access adjacent locations in 

global memory, the fetches are “coalesced” 

automatically into a single large fetch 

– Absolutely necessary for good performance 

– Number 1 priority 
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Strategies for Performance 

• Reuse as much data as possible 

– By using shared registers 

• Break problem into pieces that are small enough 

to fit into shared memory 

– By having threads perform cleverly designed loops 

• Not using shared registers 

• Loops within threads that solve the following 

problem… 



Data Reuse Through Looping 

• To maximize coalescence, we need blocks of 

threads that are “long” in the i-direction.   

• However, because of our size limitation on 

shared memory, this forces blocks to be 

“narrow” in the other two dimensions. 

– 64x1x1, for example 

• This is a problem for the parts of the calculation 

that require neighboring data in the j and k 

directions 

– Can we still reuse data these parts of the calculation? 

– Yes! Partially. 

10/4/2012 



Data Reuse: Looping + Shared Registers 

• Use shared 

registers to reuse 

data needed for 

“i-calculations” 

• Have each thread 

loop in the j-

direction to reuse 

data needed for 

the “j-

calculations” 

in registers 

        
        
        
        
        
        
        

        

i 
k 

j 
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threads 

• Each element is only fetched 

once from global memory, and 

then used nine times (see 

animation) 

shared registers 
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Other Strategies for Performance 

• “Hide” memory fetches with computations 

– Structure kernel so that data is being fetched while 

computations are being performed (the scheduler 

will try to help with this) 

• Choose block dimensions that allow for 

maximum thread-scheduling efficiency 

– Multiples of 32 threads 

– Blocks that are “longer” in one dimension (i) to 

facilitates maximum coalescence 
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Strategies for Performance 

• Designing your program so that it uses all of 

these strategies is difficult 

– It’s a bit like trying to design a car that is luxurious, 

safe, fast, agile, reliable, practical, inexpensive, 

visually appealing, and fuel efficient all at the same 

time 

• There are tradeoffs - you have to find the right 

balance 
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Results 
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Evaluating Results 

• Is that good?  How do we know? 

• Estimate theoretical hardware peak 

– 933 GFLOP/s for single precision 

– But we can’t use some of the hardware 

• No texturing, reduces peak by about 33% 

– This number assumes we’re taking advantage of the 

fused multiply-add instruction, but our computation 

doesn’t have many multiply-adds 

• Reduces peak by about 50% 

– So achievable hardware peak is about 311 GFLOP/s 

– Kernel runs at 82% of peak, not bad!!! 
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Estimating Application Speed Limit 

• Determine theoretical application “speed limit” 

• Based on global memory bandwidth and 

algorithm memory requirements 

– Even if our algorithm has 100% data reuse and we 

completely hide all operations behind data fetches, 

we would still need to fetch each element of data 

from global memory one time, and write our results 

back 

– Compute time required to move data 

T = (data moved) / (global memory bandwidth) 

– Compute speed limit (FLOP/s) 

ASL = (Algorithm FLOP Count) / T 

 



30 

Application Speed Limit 

• 786 GFLOP/s for the 399 operation subset (Tesla C1060 GPU) 

– Because this computation has such a high 

operation-to-memory-fetch ratio (~30:1), this “speed 

limit” is high  

– This is higher than our achievable hardware peak, 

which means our performance might increase if the 

GPU had faster multiprocessors 

– Suggests that our program is not memory bound 

• This peak can be calculated before writing any 

code to find out if a particular computation is a 

good candidate for GPU acceleration 

– Increment array example: 12.8 GFLOP/s = poor 

candidate 
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Good Candidates for GPU 

Acceleration 

• Easily parallelizable 

– Same set of independent operations are performed 

on each element in a domain (SIMD) 

– These operations can execute in any order 

• Spatial locality 

– Individual operations require data that is nearby in 

the domain 

– Facilitates data reuse  

• High operation-to-memory-fetch ratio 

– Calculate theoretical “speed limit” based on 

algorithm memory requirements and global memory 

bandwidth 
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Potential Future Work 

• Add other big time step computations  

– Turbulence, coriolis, buoyancy 

– Cloud physics  

– Radiation 

• Include small time step 

– Texture/interpolators for the pressure gradient 

• Parallel version (MPI) 
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Resources for Learning CUDA 

• Programming Massively Parallel Processors: A 

Hands-On Approach by Kirk and Hwu 

• Online lecture slides and audio 

– ECE 498 AL (Univ. of Illinois) 

• NVIDIA CUDA Programming Guide 

• Portland Group CUDA Fortran Programming 

Guide and Reference 

• Forums 

– Portland group 

– NVIDIA 



TEAM TINKER 


