
James Stevens
Praneet Sahgal
Shreyas Siravara
Bhargava Gopi Reddy

Black Hole Simulation with CUDA

Accelerating HARM: A General Relativistic

Magnetohydrodynamics Code

12/7/2014

Problem Description

• Astrophysical Fluid Dynamics Group

▫ In the Center for Theoretical Astrophysics at UIUC

▫ Lead by Professor Charles F. Gammie

▫ Numerical modeling

• Star formation

• Magnetohydrodynamics

• Accretion physics

▫ Black hole simulation - HARM

12/7/2014

Accretion disk
 (Interstellar)

Problem Description

• HARM

▫ 3-D general relativistic magnetohydrodynamics
(GRMHD) code

▫ Black hole simulation

12/7/2014

https://uofi.app.box.com/s/edx8rxd8quj75qt56ui7
https://uofi.app.box.com/s/edx8rxd8quj75qt56ui7

Problem Description

• HARM-2D

▫ 2-D version of HARM

▫ Fundamental tool for analysis before running
HARM 3-D on supercomputer

▫ Testing new physics or initial conditions

▫ Predicts 3-D results well

▫ Accretion disks exhibit strong axis-symmetry

▫ Runs on desktop, but takes hours (runs overnight)

• Goal: accelerate HARM-2D

▫ < 1 hour

12/7/2014

Profiling

• Perf

▫ Linux tool for performance analysis

▫ Supports hardware performance counters

▫ Used to find initial targets for GPU acceleration

12/7/2014

12/7/2014

Profiling Results

Serial Solution

• fluxcalc()

▫ Calculates the amount of mass that moves across
zone boundaries

▫ Uses conservation of

▫ rest-mass:

▫ energy-momentum:

▫ magnetic flux:

12/7/2014

Serial Code

12/7/2014

• fluxcalc()

▫ Main flux calculation (double for-loop)

▫ Includes loops within outer loops

▫ Rescale operation (two double for-loops)

▫ Also called in main flux calculation

▫ Slope calculation (double for-loop)

Other Functions

12/7/2014

• UtoPrim_2d()

▫ Utoprim_newbody ~ 18%

▫ General Newton Raphson ~ 9.23%

▫ Iterative algorithm

▫ raise_g ~ 2.95%

▫ Other ~1% each (mhd_calc, func_vsq, etc.)

• source()

▫ A 4x4 loop

▫ Multiple function calls for each dimension

• get_state and get_geometry

▫ Can be accelerated like in fluxcalc()

Code Evaluation Summary

12/7/2014

• Current work:

▫ fluxcalc – easier to parallelize

• Future work: everything else

▫ Fine grained function calls and small loops

▫ Non-trivial to parallelize

▫ Parallelize Newton method

HARM Parallelization Issues

12/7/2014

• Multiple files (~30)

▫ Complex source code (~8600 lines)

• Data Movement
▫ Identifying the required arrays and scalars

▫ Numerous variables/globals

▫ Non-trivial due to complex code

• Loop in fluxcalc – but nested function calls

Parallelization Strategy

12/7/2014

• Parallelize 2-D loops in fluxcalc()

▫ Loops iterate over entire domain

▫ Iterations are independent

▫ 1 thread/iteration, 1 kernel/loop

▫ 3 kernels, 2 device functions

▫ Largest kernel: each thread performs 912+
operations

for(domain y-dim) {

 for(domain x-dim) {

 // 2 function calls

}}

// loop 2 (slope calc)

for(domain y-dim) {

 for(domain x-dim) {

 // 11 function calls

 // 912+ operations

}}

// repeat loop 1

12/7/2014

// copy data h->d

kernel1<<<>>>()

// copy data h->d

kernel2<<<>>>()

// copy data async h<-d

// copy data async h->d

// sync

kernel3<<<>>>()

// copy data async h<-d

// copy data async h->d

// sync

kernel1<<<>>>()

// copy data d<-h

fluxcalc() serial fluxcalc() parallel

12/7/2014

Parallel Optimizations

• Long thin blocks for memory coalescence

▫ N x 1 blocks, not square

▫ ~10% reduction in kernel execution time

• Allocated GPU arrays once in init()

▫ 2.5% reduction in total GPU execution time

▫ May not be possible with larger runs

• Reduce computation by in-lining some GPU
functions

▫ Since some functions are general purpose,
sometimes do more work than necessary

▫ Could be optimized on CPU as well

12/7/2014

Parallel Optimizations Cont.

• Blocksize is a multiple of warp size (32)

• Constant variables in constant memory

• Minimize host-device memory transfers

▫ Multiple kernels re-use the same data

▫ Copy un-changing arrays once at beginning

Evaluation

12/7/2014

Performance on GEM
cluster

• ~12x speedup in fluxcalc

▫ ~14x speedup in
parallelized portions of
fluxcalc

• ~44% reduction in total
HARM runtime

Related Work

12/7/2014

• Nvidia paper: Adaptive Mesh Astrophysical Fluid
Simulations on GPU (2009)

▫ Reported 10x speedup on entire application

▫ NON-relativistic, HARM is a relativistic MHD code

▫ Primitive variable evaluation is more expensive in
HARM, so more runtime is spent outside of fluxcalc()

• Research at University of Tübingen

▫ Relativistic MHD, simulating neutron star
magnetic fields

▫ 10x speedup double precision, 50 single precision
▫ (quad core?)

Conclusion

12/7/2014

• Achieved 14x speedup in parallelized code

▫ Including all overhead and memory copies

• ~44% total HARM runtime reduction

• HARM is worth investigating further

▫ Expect at least 10x overall speedup in HARM-2d

▫ HARM-3d most likely amenable to GPU
acceleration as well

Any Questions?

12/7/2014

