
A Unified, Hardware-Fitted, Cross-GPU
Performance Model

James Stevens
Andreas Klöckner

May 2, 2016

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 1 / 1

Goal

I Predict performance of computational kernels on GPUs

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 2 / 1

Related Work

I Requires detailed hardware knowledge
I Requires instruction-level analysis of code

I Often by hand

I Demonstrated on single GPU or GPUs of
same vendor and generation

I Achieves wide range of accuracy, generally
no better than about 12% geometric
mean error

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 3 / 1

Goal

I Predict performance of computational kernels on GPUs

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 4 / 1

Goal

I Predict performance of computational kernels on GPUs
I Without hardware knowledge
I Across hardware vendors/generations
I Automatically
I Quickly
I Simply

I How much accuracy must be sacrificed?

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 5 / 1

Modeling Execution Time

I Model execution time as linear combination of kernel
properties

Twall(n) ≈
Nproperties∑

i=1

αipi (n),

where n is parameter set governing problem size and αi is
weight (run time cost) for i th property

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 6 / 1

Outline for Model Discussion

Twall(n) ≈
Nproperties∑

i=1

αipi (n),

1. Which properties pi contribute linearly to execution time?

2. How do we gather kernel statistics to produce properties?

3. How do we determine hardware-specific property weights αi?

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 7 / 1

Modeling Execution Time

I Kernel Property Categories
I Data motion
I Arithmetic
I Synchronization
I Launch overhead

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 8 / 1

Data Motion Properties

1. Global memory access counts
I Categorize by stride, data type, direction
I Include min(loads, stores) property to account for nonlinearity

from overlapping loads and stores
I Further categorize strided access by array utilization percentage

2. Local (shared) memory access counts
I Categorize by data type, direction

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 9 / 1

Arithmetic Properties

1. Arithmetic operation counts
I +/−
I ∗
I ÷
I ∧ (separate property for small integer powers like a2)
I Special operations, e.g., rsqrt()

I Categorize by data type

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 10 / 1

Synchronization Properties

1. Barrier counts
I Total encountered by all threads

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 11 / 1

Launch Overhead Properties

1. Constant (i.e. pconst(n) = 1) for kernel launch overhead

2. Thread group count for additional group launch overhead

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 12 / 1

How do we gather these statistics automatically?

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 13 / 1

Loopy

I Programming system embedded in Python that enables
creation of transformable computational kernels for GPUs

I Motivation: separate mathematical intent from computational
minutiae

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 14 / 1

Loopy

I Example: matrix multiplication

Specify mathematical intent:

kn= make_kernel(

"{[i,k,j]: 0<=i<n and 0<=k<m and 0<=j<l}", # loop domain

"c[i, j] = sum(k, a[i, k]*b[k, j])" # instructions

, name="matmul", assumptions="n,m,l >= 1")

Specify transformations:

parallelize i and j loops

kn= split_iname(kn, "i", 16, outer_tag="g.0", inner_tag="l.1")

kn= split_iname(kn, "j", 16, outer_tag="g.1", inner_tag="l.0")

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 15 / 1

Extend Loopy - Kernel Stats Counting

I Examine Loopy’s internal representation of kernel
I To count memory accesses

1. For each instruction,

1.1 Recursively traverse expression tree, accumulating mem.
accesses in mapping of category tuples to counts, e.g.,
{(dtype, stride, direction, arrayname) : count}

1.2 Determine number of repetitions in terms of kernel parameters
(n) by examining loop index domains

1.3 Multiply counts in mapping by polynomial of kernel parameters

2. Accumulate total for all instructions

I Similar process for counting arithmetic operations

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 16 / 1

Extend Loopy - Kernel Stats Counting

I To count barriers
1. Generate ‘scheduled’ Loopy kernel

I Determines ordering/nesting of loops

2. Step through instructions counting barriers, keeping track of
repetition incurred when entering loops

3. Again, return polynomial in terms of parameters n

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 17 / 1

Fitting Model

I We now have pi (n) for all i

Twall(n) ≈
Nproperties∑

i=1

αipi (n)

I How do we find weights αi?

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 18 / 1

Fitting Model

I Run set of cleverly designed measurement kernels

I Collect execution times for each kernel, store properties in
matrix A with one property per column

I Use LLS to find weights αi minimizing relative error

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 19 / 1

Minimizing Relative Error

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 20 / 1

Measurement Kernel Set

1. Non-square matrix multiplication (tiled and naive)

2. Transpose (with and without prefetching)

3. Vector scale and add (stride-1 and stride-2 access)

4. Perform arithmetic (one kernel for each arithmetic property)

5. Vector copy

6. Vector addition (add four vectors)

7. Vector store (no loads, just store index in each element)

8. Filled stride-2 vector sum reduction (stride-2 access, but use
all data)

9. Filled stride-3 vector sum reduction (stride-3 access, but use
all data)

10. Empty kernel

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 21 / 1

Measurement Kernel Set

I For each kernel configuration,
I 4 to 8 problem sizes
I 3 thread group configurations

I 360 measurement kernels total

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 22 / 1

Test Kernels

1. Finite Differences
I Applies 5-pt stencil w/ quadratic source term to square matrix
I Prefetches (gsize + 2)× (gsize + 2) tiles into local mem.

2. ‘Skinny’ Matrix Multiplication
I Performs tiled multiplication of two matrices of size n ×m and

m × l , where n = l = m/8
I Prefetches gsize × gsize tiles into local mem.

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 23 / 1

Test Kernels

3. Convolution
I Applies three 7× 7 image filters to three square RGB images
I Prefetches (gsize + 6)× (gsize + 6) image tiles into local mem.
I Stores filters in local mem.

4. N-Body
I Given 3× n array of n positions (column-major data layout),

computes sum of inverses of distances between each position
and every other position

I Prefetches 3× gsize tiles into local mem.

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 24 / 1

Test Hardware

I GPUs

1. Nvidia GTX Titan X
(Maxwell generation)

2. Nvidia Tesla K40c
(Kepler generation)

3. Nvidia Tesla C2070
(Fermi generation)

4. AMD Radeon R9 Fury

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 25 / 1

Results: Finite Differences

Geo-mean Error

Titan X 0.30
C2070 0.10
K40c 0.01
R9 Fury 0.63

Overall 0.11

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 26 / 1

Results: Skinny Matrix Multiplication

Geo-mean Error

Titan X 0.08
C2070 0.10
K40c 0.13
R9 Fury 0.28

Overall 0.13

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 27 / 1

Results: N-Body

Geo-mean Error

Titan X 0.32
C2070 0.27
K40c 0.54
R9 Fury 0.76

Overall 0.43

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 28 / 1

Results: Convolution

Geo-mean Error

Titan X 0.10
C2070 0.13
K40c 0.03
R9 Fury 0.23

Overall 0.10

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 29 / 1

Accuracy Summary: Geo-Means of Rel. Abs. Error

Nvidia Nvidia Nvidia AMD
GTX Tesla Tesla Radeon Cross-GPU

Kernel Titan X C2070 K40c R9 Fury Geo-Mean

Finite Diff 0.30 0.10 0.01 0.63 0.11

Skinny MM 0.08 0.10 0.13 0.28 0.13

N-Body 0.32 0.27 0.54 0.76 0.43

Convolution 0.10 0.13 0.03 0.23 0.10

Cross-Kernel
Geo-Mean 0.16 0.14 0.06 0.42

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 30 / 1

Example Weights - Radeon R9 Fury

Property Weight

Addition/Subtraction 6.81e-13
Multiplication 5.68e-13
Exponentiation (only squaring) 3.91e-13
Other Ops (only rsqrt) 1.61e-12
Local F32 Loads -1.76e-12
F32 Stride-1 Loads 8.27e-12
F32 Stride-2 (100%) Loads 9.82e-13
F32 Stride-3 (33%) Loads 2.89e-11
F32 Stride-3 (100%) Loads 9.30e-13
F32 Uncoalesced (100%) Loads 2.67e-12
F32 Stride-1 Stores 6.52e-12
F32 Uncoalesced (100%) Stores 3.55e-10
Min(Stride-1 Loads, Stride-1 Stores) -6.63e-12
Barriers 4.26e-11
Thread Groups 3.75e-09
Const(1) 1.29e-04

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 31 / 1

Comparison to Related Work

I Differences:
I We completely automate gathering of all performance-relevant

kernel properties used in model
I We model execution time without explicit representation of

hardware characteristics or behavior
I Our model is hardware vendor- and generation- independent
I Our model is simple and amenable to analysis; weights have

known meanings, allowing reasoning about sources of kernel
execution cost

I Our model evaluation is rapid and simple, requiring small
inner-product

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 32 / 1

Potential Applications

I Performance Optimization
Selecting fastest kernel in kernel configuration space

I Runtime performance tuning

I Algorithm Design
Providing programmer with insight into which aspects of
workload contribute most to cost

I Load Balancing
Providing accurate predictions of workload run times enabling
better scheduling

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 33 / 1

End

Questions?

James Stevens Andreas Klöckner University of Illinois at Urbana-Champaign 34 / 1

