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Goal: Model and Predict Performance

Why?

I Algorithm Design
Provide programmer with insight into which aspects of
workload contribute most to cost

I Performance Optimization
Select fastest algorithm in configuration space

I Runtime performance tuning (requires fast prediction)

I Load Balancing
Provide accurate predictions of workload execution times,
enabling better scheduling
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Goal: Model and Predict Performance

What kind performance model do we want?

I Analytical
Model should provide insight about what aspects of algorithm
contribute to overall workload; no machine learning

I Simple
Evaluation of model should be fast enough to enable runtime
performance prediction

I Platform Independent, Black Box
Model should be portable and should not reqire knowledge of
(or manual input of) hardware stats
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Simple Example - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

I What’s the simplest analytical model we can think of?

I t = loads ∗ ploads

I How can we determine ploads if hardware is a black box?

I Run a measurement computation to calibrate model
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Simple Example - Model Mat-mul on GTX Titan X GPU

Quick demo.
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Simple Example - Model Mat-mul on GTX Titan X GPU
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Motivation

What if we want to accurately predict multiple matmul algorithms?
Other computations?

I Need more complicated, general model

I Additional features (kernel properties)

I Run additional measurement kernels on GPU

I May need to sacrifice some accuracy for generality

I Different applications may have different
accuracy/generality requirements
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Solution: Let the developer build a model that meets their needs
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Calibration Phase
1. Create model expression using available kernel features

I May create custom features

2. Filter kernel generators to produce measurement kernel set
I May create custom measurement kernels

3. Compute features for each kernel using Loopy stats gatherer

4. Fit Model
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Prediction Phase

1. Create loopy kernel

2. Compute features for kernel using Loopy stats gatherer

3. Use model with parameter values from calibration phase to
produce prediction
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Counting Statistics with Loopy

Kernel stats collected
I Memory Traffic

I Categorize by data type, memory type, direction
I Info on memory access pattern: ”stride”

I (FL)OP/s: +/−, ∗, ÷, ∧
I Categorize by data type, operation type

I Synchronization
I Launch, local barrier, global barrier
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Counting Statistics with Loopy

knl = lp.make_kernel(

"{[i,j]: 0<=i,j<n}",

"a[i,j]=b[j,i]")

How do we count?

1. Recursively traverse instruction expression tree of a Loopy
kernel, counting stats for single instruction

2. Determine how many times instruction executes
I Barvinok counting library

S. Verdoolaege et. al. Counting Integer Points in Parametric Polytopes Using Barvinok’s Rational
Functions, Algorithmica, v.48 n.1, March 2007
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Generating Kernels with KernelCollection

Kernel generator functions produce
measurement kernel set

I Use customizable tags to control
which kernels will be produced

I Generators are also customizable

I Example filtering:
I Produce only kernels operating

on float64 data
I Produce only kernels that don’t

use local memory

Tags:   dtype:f32, barriers:True, prefetch:True
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Creating Model and Features with ModelFactory

Feature
I Object with an eval(knl) function that returns a numeric value

characterizing the kernel
I Number of stride-1 float32 global memory loads
I Number of thread groups

I May create custom features
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Creating Model and Features with ModelFactory

Model

I Mathematical expression relating input features, parameters to
output feature

I t = loads ∗ ploads
I Gather features for all measurement kernels, then fit model

using nonlinear least squares to solve for model parameters
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Matrix Multiplication Model - Version 1

I t = loads ∗ ploads
I Tiled matmul with

prefetching
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Model Benefits

Matrix Multiplication Model - Version 1

I t = loads ∗ ploads
I Naive matmul and

Tiled matmul with
prefetching

I What happened?
Different mem access
patterns, different
effective mem access
costs, different types
of memory used
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Matrix Multiplication Model - Version 2

t = gloads-s1-b4 ∗ pgl-s1-b4
+ gloads-s1-b2 ∗ pgl-s1-b2
+ gstores-s1-b4 ∗ pgs-s1-b4
+ lloads ∗ pll
+ lstores ∗ pls
+ mult-ops ∗ pmult

+ add-ops ∗ padd
+ thread-groups ∗ pg-overhead
+ kernel-launches ∗ pk-overhead

I Need additional measurement
kernels

I Memory traffic, add/mult ops,
local mem access, empty kernel
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Modeling Nonlinear Relationships

I GPUs overlap local and global operations

I We can model this!

I Let V , G , L be overhead, global, and local costs

I Want: t = V + max(G , L), but max() is not differentiable

I Instead:

t = V +G ∗ (tanh(G −L)+1)∗0.5+L∗ (tanh(L−G )+1)∗0.5
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Accuracy vs. Generality

I Increasing model generality decreases accuracy

I We provide an accuracy-vs-generality knob for
controlling this tradeoff

G
enerality

Accuracy
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Simplicity vs. Speed

I Increasing model complexity decreases speed

I Most models built with this software will be
much faster to evaluate than complicated
non-black-box options, but some will be faster
than others

I We allow the developer to make the model as
simple as necessary to achieve the desired
evaluation time
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End.
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