
Introduction
Software Components

Model Complexity vs. Accuracy

Balancing Generality and Accuracy with Portable,
Customizable, Black-Box Performance Modeling

James Stevens

December 15, 2017

James Stevens University of Illinois at Urbana-Champaign 1 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Acknowledgements

I Andreas Klöckner

I Matt Wala

I Kaushik Kulkarni

James Stevens University of Illinois at Urbana-Champaign 2 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Goal: Model and Predict Performance

Why?

I Algorithm Design
Provide programmer with insight into which aspects of
workload contribute most to cost

I Performance Optimization
Select fastest algorithm in configuration space

I Runtime performance tuning (requires fast prediction)

I Load Balancing
Provide accurate predictions of workload execution times,
enabling better scheduling

James Stevens University of Illinois at Urbana-Champaign 3 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Goal: Model and Predict Performance

What kind performance model do we want?

I Analytical
Model should provide insight about what aspects of algorithm
contribute to overall workload; no machine learning

I Simple
Evaluation of model should be fast enough to enable runtime
performance prediction

I Platform Independent, Black Box
Model should be portable and should not reqire knowledge of
(or manual input of) hardware stats

James Stevens University of Illinois at Urbana-Champaign 4 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Simple Example - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

I What’s the simplest analytical model we can think of?

I t = loads ∗ ploads

I How can we determine ploads if hardware is a black box?

I Run a measurement computation to calibrate model

James Stevens University of Illinois at Urbana-Champaign 5 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Simple Example - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

I What’s the simplest analytical model we can think of?
I t = loads ∗ ploads

I How can we determine ploads if hardware is a black box?

I Run a measurement computation to calibrate model

James Stevens University of Illinois at Urbana-Champaign 5 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Simple Example - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

I What’s the simplest analytical model we can think of?
I t = loads ∗ ploads

I How can we determine ploads if hardware is a black box?

I Run a measurement computation to calibrate model

James Stevens University of Illinois at Urbana-Champaign 5 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Simple Example - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

I What’s the simplest analytical model we can think of?
I t = loads ∗ ploads

I How can we determine ploads if hardware is a black box?

I Run a measurement computation to calibrate model

James Stevens University of Illinois at Urbana-Champaign 5 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Simple Example - Model Mat-mul on GTX Titan X GPU

Quick demo.

James Stevens University of Illinois at Urbana-Champaign 6 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Simple Example - Model Mat-mul on GTX Titan X GPU

2 × 103 3 × 103

n

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Ex
ec

ut
io

n
tim

e
(s

)
Model Prediction vs. Actual

Square Matmul

actual
predicted

James Stevens University of Illinois at Urbana-Champaign 7 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Motivation

What if we want to accurately predict multiple matmul algorithms?
Other computations?

I Need more complicated, general model

I Additional features (kernel properties)

I Run additional measurement kernels on GPU

I May need to sacrifice some accuracy for generality

I Different applications may have different
accuracy/generality requirements

James Stevens University of Illinois at Urbana-Champaign 8 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Motivation

What if we want to accurately predict multiple matmul algorithms?
Other computations?

I Need more complicated, general model

I Additional features (kernel properties)

I Run additional measurement kernels on GPU

I May need to sacrifice some accuracy for generality

I Different applications may have different
accuracy/generality requirements

James Stevens University of Illinois at Urbana-Champaign 8 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Acknowledgements
Motivation

Motivation

Solution: Let the developer build a model that meets their needs

James Stevens University of Illinois at Urbana-Champaign 9 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Measurement

kernels

Kernel

stats

feature

feature

…

feature

feature

…

James Stevens University of Illinois at Urbana-Champaign 10 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Measurement

kernels

Kernel

stats

feature

feature

…

feature

feature

…

Calibration Phase
1. Create model expression using available kernel features

I May create custom features

2. Filter kernel generators to produce measurement kernel set
I May create custom measurement kernels

3. Compute features for each kernel using Loopy stats gatherer

4. Fit Model

James Stevens University of Illinois at Urbana-Champaign 11 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Measurement

kernels

Kernel

stats

feature

feature

…

feature

feature

…

Calibration Phase
1. Create model expression using available kernel features

I May create custom features

2. Filter kernel generators to produce measurement kernel set
I May create custom measurement kernels

3. Compute features for each kernel using Loopy stats gatherer

4. Fit Model

James Stevens University of Illinois at Urbana-Champaign 11 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Measurement

kernels

Kernel

stats

feature

feature

…

feature

feature

…

Calibration Phase
1. Create model expression using available kernel features

I May create custom features

2. Filter kernel generators to produce measurement kernel set
I May create custom measurement kernels

3. Compute features for each kernel using Loopy stats gatherer

4. Fit Model

James Stevens University of Illinois at Urbana-Champaign 11 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Measurement

kernels

Kernel

stats

feature

feature

…

feature

feature

…

Calibration Phase
1. Create model expression using available kernel features

I May create custom features

2. Filter kernel generators to produce measurement kernel set
I May create custom measurement kernels

3. Compute features for each kernel using Loopy stats gatherer

4. Fit Model
James Stevens University of Illinois at Urbana-Champaign 11 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Test kernel
Test

kernel

stats

feature

feature
…

feature

feature

…

Performance

prediction

Prediction Phase

1. Create loopy kernel

2. Compute features for kernel using Loopy stats gatherer

3. Use model with parameter values from calibration phase to
produce prediction

James Stevens University of Illinois at Urbana-Champaign 12 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Test kernel
Test

kernel

stats

feature

feature
…

feature

feature

…

Performance

prediction

Prediction Phase

1. Create loopy kernel

2. Compute features for kernel using Loopy stats gatherer

3. Use model with parameter values from calibration phase to
produce prediction

James Stevens University of Illinois at Urbana-Champaign 12 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Software Overview

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Test kernel
Test

kernel

stats

feature

feature
…

feature

feature

…

Performance

prediction

Prediction Phase

1. Create loopy kernel

2. Compute features for kernel using Loopy stats gatherer

3. Use model with parameter values from calibration phase to
produce prediction

James Stevens University of Illinois at Urbana-Champaign 12 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Counting Statistics with Loopy

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Measurement

kernels

Kernel

stats

feature

feature

…

feature

feature

…

James Stevens University of Illinois at Urbana-Champaign 13 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Counting Statistics with Loopy

Kernel stats collected
I Memory Traffic

I Categorize by data type, memory type, direction
I Info on memory access pattern: ”stride”

I (FL)OP/s: +/−, ∗, ÷, ∧
I Categorize by data type, operation type

I Synchronization
I Launch, local barrier, global barrier

James Stevens University of Illinois at Urbana-Champaign 14 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Counting Statistics with Loopy

knl = lp.make_kernel(

"{[i,j]: 0<=i,j<n}",

"a[i,j]=b[j,i]")

How do we count?

1. Recursively traverse instruction expression tree of a Loopy
kernel, counting stats for single instruction

2. Determine how many times instruction executes
I Barvinok counting library

S. Verdoolaege et. al. Counting Integer Points in Parametric Polytopes Using Barvinok’s Rational
Functions, Algorithmica, v.48 n.1, March 2007

James Stevens University of Illinois at Urbana-Champaign 15 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Generating Kernels with KernelCollection

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Kernel

stats

feature

feature

…

feature

feature

…

Measurement

kernels

James Stevens University of Illinois at Urbana-Champaign 16 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Generating Kernels with KernelCollection

Kernel generator functions produce
measurement kernel set

I Use customizable tags to control
which kernels will be produced

I Generators are also customizable

I Example filtering:
I Produce only kernels operating

on float64 data
I Produce only kernels that don’t

use local memory

Tags: dtype:f32, barriers:True, prefetch:True

James Stevens University of Illinois at Urbana-Champaign 17 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Creating Model and Features with ModelFactory

Kernel Collection Model FactoryLoo.py

Kernel

Statistics

Gatherer

Model
Model

param

values

generator

generator

…

generator

generator

…

Measurement

kernels

Kernel

stats

feature

feature

…

feature

feature

…

James Stevens University of Illinois at Urbana-Champaign 18 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Creating Model and Features with ModelFactory

Feature
I Object with an eval(knl) function that returns a numeric value

characterizing the kernel
I Number of stride-1 float32 global memory loads
I Number of thread groups

I May create custom features

James Stevens University of Illinois at Urbana-Champaign 19 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Software Overview
Software Component Details

Creating Model and Features with ModelFactory

Model

I Mathematical expression relating input features, parameters to
output feature

I t = loads ∗ ploads
I Gather features for all measurement kernels, then fit model

using nonlinear least squares to solve for model parameters

James Stevens University of Illinois at Urbana-Champaign 20 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

Matrix Multiplication Model - Version 1

I t = loads ∗ ploads
I Tiled matmul with

prefetching

2 × 103 3 × 103

n

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Ex
ec

ut
io

n
tim

e
(s

)

Model Prediction vs. Actual
Square Matmul

actual
predicted

James Stevens University of Illinois at Urbana-Champaign 21 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

Matrix Multiplication Model - Version 1

I t = loads ∗ ploads
I Naive matmul and

Tiled matmul with
prefetching

I What happened?
Different mem access
patterns, different
effective mem access
costs, different types
of memory used

2 × 103 3 × 103

n

10 2

10 1

Ex
ec

ut
io

n
tim

e
(s

)

Model Prediction vs. Actual
Square Matmul

actual (pf)
predicted (pf)
actual (naive)
predicted (naive)

James Stevens University of Illinois at Urbana-Champaign 22 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

Matrix Multiplication Model - Version 2

t = gloads-s1-b4 ∗ pgl-s1-b4
+ gloads-s1-b2 ∗ pgl-s1-b2
+ gstores-s1-b4 ∗ pgs-s1-b4
+ lloads ∗ pll
+ lstores ∗ pls
+ mult-ops ∗ pmult

+ add-ops ∗ padd
+ thread-groups ∗ pg-overhead
+ kernel-launches ∗ pk-overhead

I Need additional measurement
kernels

I Memory traffic, add/mult ops,
local mem access, empty kernel

James Stevens University of Illinois at Urbana-Champaign 23 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

Matrix Multiplication Model - Version 2

2 × 103 3 × 103

n

10 1

Ex
ec

ut
io

n
tim

e
(s

)
Model Prediction vs. Actual

Square Matmul

actual (pf)
predicted (pf)
actual (naive)
predicted (naive)

James Stevens University of Illinois at Urbana-Champaign 24 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

Modeling Nonlinear Relationships

I GPUs overlap local and global operations

I We can model this!

I Let V , G , L be overhead, global, and local costs

I Want: t = V + max(G , L), but max() is not differentiable

I Instead:

t = V +G ∗ (tanh(G −L)+1)∗0.5+L∗ (tanh(L−G)+1)∗0.5

James Stevens University of Illinois at Urbana-Champaign 25 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

Accuracy vs. Generality

I Increasing model generality decreases accuracy

I We provide an accuracy-vs-generality knob for
controlling this tradeoff

G
enerality

Accuracy

James Stevens University of Illinois at Urbana-Champaign 26 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

Simplicity vs. Speed

I Increasing model complexity decreases speed

I Most models built with this software will be
much faster to evaluate than complicated
non-black-box options, but some will be faster
than others

I We allow the developer to make the model as
simple as necessary to achieve the desired
evaluation time

S
im

p
lic

ity

S
p

e
e

d

James Stevens University of Illinois at Urbana-Champaign 27 / 28

Introduction
Software Components

Model Complexity vs. Accuracy

Example Models and Accuracy Results
Model Benefits

End.

James Stevens University of Illinois at Urbana-Champaign 28 / 28

	Introduction
	Acknowledgements
	Motivation

	Software Components
	Software Overview
	Software Component Details

	Model Complexity vs. Accuracy
	Example Models and Accuracy Results
	Model Benefits

