
Introduction
Software Components

Results

Portable, Customizable, Black-Box GPU
Performance Modeling

James Stevens

October 12, 2018

James Stevens University of Illinois at Urbana-Champaign 1 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Acknowledgements

I Andreas Klöckner

I Matt Wala

I Kaushik Kulkarni

James Stevens University of Illinois at Urbana-Champaign 2 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Big Picture

I Everyone wants fast and easy solutions to PDEs

PDE Solver Code

I fast = high performance code

I easy = minimal input from user

James Stevens University of Illinois at Urbana-Champaign 3 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

High Performance Code

I Different code
variants perform
better on different
machines

I Solver must
produce, select
these with
minimal user effort

James Stevens University of Illinois at Urbana-Champaign 4 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Code Variants

I Loopy provides code transformation

Loopy

Code variant(s)

Tool

Exec Time

Solver

I Need tool to choose high performing transformation set from
available options

James Stevens University of Illinois at Urbana-Champaign 5 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

What should this tool look like?

I Analytical model determining which variant to produce

Twall(n) ≈ g
(
featin0 (n), . . . , featinj (n), p0, . . . , pk

)
I e.g., t = madds(n) · pmadd

I Feature: quantitative kernel characteristic

I Parameter: hardware-dependent value relating features to
exec time

I How do we determine g? � Key question!

(topic of this presentation)

James Stevens University of Illinois at Urbana-Champaign 6 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

What should this tool look like?

I Analytical model determining which variant to produce

Twall(n) ≈ g
(
featin0 (n), . . . , featinj (n), p0, . . . , pk

)
I e.g., t = madds(n) · pmadd

I Feature: quantitative kernel characteristic

I Parameter: hardware-dependent value relating features to
exec time

I How do we determine g? � Key question!

(topic of this presentation)

James Stevens University of Illinois at Urbana-Champaign 6 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

How to Determine Model Expression

I Determine kernel features a priori

I Require minimal hardware info from user;
GPU = black box

I Find parameters p0, . . . , pk by gathering
feature values (including exec times) from
set of measurement computations and
fitting model to data

I Model expression g
I Can we create broadly applicable g?

James Stevens University of Illinois at Urbana-Champaign 7 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Memory access pattern variants

I Fetching b takes 5x longer

I Access patterns for memory access features have numerous
characteristics that individually may affect execution time

I Multiple thead index strides (any int)

I loop stride (any int)

I access to footprint ratio (any float)

I data size

I direction

I memory type
I Broadly applicable model expression would be massive, most

features unused for given computation

James Stevens University of Illinois at Urbana-Champaign 8 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Approach

I Let developer build model that
meets their needs

I Custom model creation
I Custom measurement kernel set

generation

G
enerality

Accuracy

S
im

p
lic

ity

S
p

e
e

d

James Stevens University of Illinois at Urbana-Champaign 9 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Simple Demo - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

I Very simple model: t = madds(n) · pmadd

I Measurement computations: more matmuls

James Stevens University of Illinois at Urbana-Champaign 10 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Simple Demo - Model Matmul on GTX Titan X GPU

Quick demo

James Stevens University of Illinois at Urbana-Champaign 11 / 25

Introduction
Software Components

Results

Acknowledgements
Motivation

Simple Demo - Model Mat-mul on GTX Titan X GPU

1,792 2,304 2,816 3,328
n (matrix width)

0.10

0.02

0.03

0.04
0.05
0.06
0.07
0.08
0.09

Ex
ec

ut
io

n
tim

e
(s

)
Model Prediction vs. Actual

Prefetching Matmul
GTX Titan X

actual
predicted

James Stevens University of Illinois at Urbana-Champaign 12 / 25

Introduction
Software Components

Results

Stats Counting
Model Construction
Generating Measurement Kernel Sets

Software components

I Loopy.statistics: Kernel stats counting

I Perflex: Model/feature construction

I UIPiCK: Measurement kernel set generation

James Stevens University of Illinois at Urbana-Champaign 13 / 25

Introduction
Software Components

Results

Stats Counting
Model Construction
Generating Measurement Kernel Sets

Counting Statistics with Loopy

Kernel stats collected
I Memory traffic

I Track mem access strides, data size, memory type, direction,
access-to-footprint ratio

I (FL)OPs: +, ×, ÷, ab, multiply-add
I Track data type

I Synchronization
I Launch, local barrier

James Stevens University of Illinois at Urbana-Champaign 14 / 25

Introduction
Software Components

Results

Stats Counting
Model Construction
Generating Measurement Kernel Sets

Counting Statistics with Loopy

knl = lp.make_kernel(

"{[i,j]: 0<=i,j<n}",

"a[i,j]=b[j,i]")

How do we count?

1. Recursively traverse instruction expression tree of a Loopy
kernel, counting stats for single instruction

2. Determine how many times instruction executes
I Barvinok counting library

S. Verdoolaege et. al. Counting Integer Points in Parametric Polytopes Using Barvinok’s Rational
Functions, Algorithmica, v.48 n.1, March 2007

James Stevens University of Illinois at Urbana-Champaign 15 / 25

Introduction
Software Components

Results

Stats Counting
Model Construction
Generating Measurement Kernel Sets

Creating Model and Features with Perflex

Feature

I Quantitative kernel characteristic that affects execution time
I May create custom features - implement as object with

eval(knl) function that returns numeric value
I Number of 32-bit global memory loads w/ local thread ID

strides {0, 1} and memory access-to-footprint ratio ≤ 2
I Number of thread groups

James Stevens University of Illinois at Urbana-Champaign 16 / 25

Introduction
Software Components

Results

Stats Counting
Model Construction
Generating Measurement Kernel Sets

Creating Model and Features with Perflex

Model

Twall(n) = featout(n) ≈ g
(
featin0 (n), . . . , featinj (n), p0, . . . , pk

)
I Mathematical expression relating input features and

parameters to output feature, differentiable with respect to
parameters

I Gather features for all measurement kernels, then fit model
using nonlinear least squares to solve for model parameters

James Stevens University of Illinois at Urbana-Champaign 17 / 25

Introduction
Software Components

Results

Stats Counting
Model Construction
Generating Measurement Kernel Sets

Generating Kernels with UIPiCK

I Use customizable tags to control
which kernels will be produced

I Filter out, e.g.,
I Kernels operating on float64 data
I Kernels that don’t use local mem

Tags: dtype:f32, barriers:True, prefetch:True

James Stevens University of Illinois at Urbana-Champaign 18 / 25

Introduction
Software Components

Results

Example Models
Model Accuracy

Modeling local-global overlap

t ≈ max(cglobal, clocal)

s(x) =

{
0 if x < 0,

1 if x ≥ 0,

ŝ(x) = (tanh(pedge · x) + 1)/2

t ≈ cglobal · ŝ(cglobal − clocal) + clocal · ŝ(clocal − cglobal)

James Stevens University of Illinois at Urbana-Champaign 19 / 25

Introduction
Software Components

Results

Example Models
Model Accuracy

Modeling local-global overlap

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
~ (local ops/global loads)

0.010

0.013

Ex
ec

ut
io

n
tim

e
(s

)
Global-Local Overlap

actual
predicted

James Stevens University of Illinois at Urbana-Champaign 20 / 25

Introduction
Software Components

Results

Example Models
Model Accuracy

Two types of models

Linear model:
t ≈ coverhead + cglobal + clocal

Nonlinear model:

t ≈ coverhead + cglobal · ŝ(cglobal − clocal) + clocal · ŝ(clocal − cglobal)

coverhead = plaunch · f -launch + pgroup · f -group

cglobal = pgmem-0 · f -gmem0 + . . . + pgmem-i · f -gmemi

clocal = (on-chip work: flops, local mem, barriers)

James Stevens University of Illinois at Urbana-Champaign 21 / 25

Introduction
Software Components

Results

Example Models
Model Accuracy

Matmul Model

coverhead = plaunch · f -launch + pgroup · f -group

cglobal = pr · f -gmem
{1,>1}{16,}
<f 32>[1]

+ pbf · f -gmem
{1,>1}{16,}
<f 32>[>8]

+ paf · f -gmem
{1,>1}{0,}
<f 32>[>8]

+ pb · f -gmem
{1,0}{,}
<f 32>[>8]

+ pa · f -gmem
{0,>1}{,}
<f 32>[>8]

clocal = pmadd · f -madd<f 32> + ploc · f -lmem<f 32>

Notation: f -mem/op type
{local thread id strides}{global thread id strides}
<data type>[access-to-footprint-ratio]

James Stevens University of Illinois at Urbana-Champaign 22 / 25

Introduction
Software Components

Results

Example Models
Model Accuracy

Matrix Multiplication Accuracy

GPU Variant n Time range Error t vs. n

Tesla
K40c

prefetch —
no fetch —

1280...2816
1280...2816

0.013...0.142
0.024...0.252

0.055
0.022

GTX
Titan X

prefetch —
no fetch —

2304...3840
2304...3840

0.031...0.153
0.080...0.465

0.042
0.048

Tesla
C2070

prefetch —
no fetch —

768...2304
768...2304

0.005...0.134
0.010...0.289

0.047
0.076

Radeon
R9 Fury

prefetch —
no fetch —

1280...2816
1280...2816

0.008...0.101
0.034...0.344

0.065
0.048

Nonlinear model Actual Predicted

James Stevens University of Illinois at Urbana-Champaign 23 / 25

Introduction
Software Components

Results

Example Models
Model Accuracy

Discontinuous Galerkin Accuracy

GPU Variant elements Time range Error t vs. elements

Radeon
R9 Fury

fetch diff —
fetch vec —
no fetch —

32768...557056
32768...557056
32768...557056

0.009...0.150
0.005...0.091
0.017...0.278

0.460
0.136
0.034

Tesla
K40c

fetch diff —
fetch vec —
no fetch —

65536...589824
65536...589824
65536...589824

0.005...0.042
0.008...0.069
0.014...0.122

0.218
0.257
0.027

Tesla
C2070

fetch diff —
fetch vec —
no fetch —

32768...294912
32768...294912
32768...294912

0.096...0.849
0.009...0.082
0.038...0.340

0.127
0.323
0.127

GTX
Titan X

fetch diff —
fetch vec —
no fetch —

131072...655360
131072...655360
131072...655360

0.011...0.054
0.006...0.027
0.034...0.167

0.403
0.024
0.003

Nonlinear model Actual Predicted

James Stevens University of Illinois at Urbana-Champaign 24 / 25

Introduction
Software Components

Results

Example Models
Model Accuracy

Finite Difference Accuracy

GPU Variant n Time range Error t vs. n

Tesla
C2070

16x16 tiles —
18x18 tiles —

10752...12096
9216...10944

0.016...0.021
0.013...0.018

0.016
0.063

Tesla
K40c

16x16 tiles —
18x18 tiles —

17920...19264
18432...20160

0.021...0.025
0.026...0.032

0.045
0.058

GTX
Titan X

16x16 tiles —
18x18 tiles —

17920...19264
18432...20160

0.012...0.014
0.013...0.017

0.155
0.087

Radeon
R9 Fury

16x16 tiles — 8960...11648 0.006...0.009 0.273

Linear model Actual Predicted

James Stevens University of Illinois at Urbana-Champaign 25 / 25

	Introduction
	Acknowledgements
	Motivation

	Software Components
	Stats Counting
	Model Construction
	Generating Measurement Kernel Sets

	Results
	Example Models
	Model Accuracy

