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Big Picture

I Everyone wants fast and easy solutions to PDEs

PDE Solver Code

I fast = high performance code

I easy = minimal input from user
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High Performance Code

I Different code
variants perform
better on different
machines

I Solver must
produce, select
these with
minimal user effort
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Code Variants

I Loopy provides code transformation

Loopy

Code variant(s)

Tool

Exec Time

Solver

I Need tool to choose high performing transformation set from
available options
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What should this tool look like?

I Analytical model determining which variant to produce

Twall(n) ≈ g
(
featin0 (n), . . . , featinj (n), p0, . . . , pk

)
I e.g., t = madds(n) · pmadd

I Feature: quantitative kernel characteristic

I Parameter: hardware-dependent value relating features to
exec time

I How do we determine g? � Key question!

(topic of this presentation)
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How to Determine Model Expression

I Determine kernel features a priori

I Require minimal hardware info from user;
GPU = black box

I Find parameters p0, . . . , pk by gathering
feature values (including exec times) from
set of measurement computations and
fitting model to data

I Model expression g
I Can we create broadly applicable g?
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Memory access pattern variants

I Fetching b takes 5x longer

I Access patterns for memory access features have numerous
characteristics that individually may affect execution time

I Multiple thead index strides (any int)

I loop stride (any int)

I access to footprint ratio (any float)

I data size

I direction

I memory type
I Broadly applicable model expression would be massive, most

features unused for given computation
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Approach

I Let developer build model that
meets their needs

I Custom model creation
I Custom measurement kernel set

generation

G
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Simple Demo - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

I Very simple model: t = madds(n) · pmadd

I Measurement computations: more matmuls
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Simple Demo - Model Matmul on GTX Titan X GPU

Quick demo
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Simple Demo - Model Mat-mul on GTX Titan X GPU
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Software components

I Loopy.statistics: Kernel stats counting

I Perflex: Model/feature construction

I UIPiCK: Measurement kernel set generation
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Counting Statistics with Loopy

Kernel stats collected
I Memory traffic

I Track mem access strides, data size, memory type, direction,
access-to-footprint ratio

I (FL)OPs: +, ×, ÷, ab, multiply-add
I Track data type

I Synchronization
I Launch, local barrier
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Counting Statistics with Loopy

knl = lp.make_kernel(

"{[i,j]: 0<=i,j<n}",

"a[i,j]=b[j,i]")

How do we count?

1. Recursively traverse instruction expression tree of a Loopy
kernel, counting stats for single instruction

2. Determine how many times instruction executes
I Barvinok counting library

S. Verdoolaege et. al. Counting Integer Points in Parametric Polytopes Using Barvinok’s Rational
Functions, Algorithmica, v.48 n.1, March 2007
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Creating Model and Features with Perflex

Feature

I Quantitative kernel characteristic that affects execution time
I May create custom features - implement as object with

eval(knl) function that returns numeric value
I Number of 32-bit global memory loads w/ local thread ID

strides {0, 1} and memory access-to-footprint ratio ≤ 2
I Number of thread groups
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Creating Model and Features with Perflex

Model

Twall(n) = featout(n) ≈ g
(
featin0 (n), . . . , featinj (n), p0, . . . , pk

)
I Mathematical expression relating input features and

parameters to output feature, differentiable with respect to
parameters

I Gather features for all measurement kernels, then fit model
using nonlinear least squares to solve for model parameters
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Generating Kernels with UIPiCK

I Use customizable tags to control
which kernels will be produced

I Filter out, e.g.,
I Kernels operating on float64 data
I Kernels that don’t use local mem

Tags:   dtype:f32, barriers:True, prefetch:True
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Modeling local-global overlap

t ≈ max(cglobal, clocal)

s(x) =

{
0 if x < 0,

1 if x ≥ 0,

ŝ(x) = (tanh(pedge · x) + 1)/2

t ≈ cglobal · ŝ(cglobal − clocal) + clocal · ŝ(clocal − cglobal)
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Modeling local-global overlap
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Two types of models

Linear model:
t ≈ coverhead + cglobal + clocal

Nonlinear model:

t ≈ coverhead + cglobal · ŝ(cglobal − clocal) + clocal · ŝ(clocal − cglobal)

coverhead = plaunch · f -launch + pgroup · f -group

cglobal = pgmem-0 · f -gmem0 + . . . + pgmem-i · f -gmemi

clocal = (on-chip work: flops, local mem, barriers)
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Matmul Model

coverhead = plaunch · f -launch + pgroup · f -group

cglobal = pr · f -gmem
{1,>1}{16,}
<f 32>[1]

+ pbf · f -gmem
{1,>1}{16,}
<f 32>[>8]

+ paf · f -gmem
{1,>1}{0,}
<f 32>[>8]

+ pb · f -gmem
{1,0}{,}
<f 32>[>8]

+ pa · f -gmem
{0,>1}{,}
<f 32>[>8]

clocal = pmadd · f -madd<f 32> + ploc · f -lmem<f 32>

Notation: f -mem/op type
{local thread id strides}{global thread id strides}
<data type>[access-to-footprint-ratio]
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Matrix Multiplication Accuracy

GPU Variant n Time range Error t vs. n

Tesla
K40c

prefetch —
no fetch —

1280...2816
1280...2816

0.013...0.142
0.024...0.252

0.055
0.022

GTX
Titan X

prefetch —
no fetch —

2304...3840
2304...3840

0.031...0.153
0.080...0.465

0.042
0.048

Tesla
C2070

prefetch —
no fetch —

768...2304
768...2304

0.005...0.134
0.010...0.289

0.047
0.076

Radeon
R9 Fury

prefetch —
no fetch —

1280...2816
1280...2816

0.008...0.101
0.034...0.344

0.065
0.048

Nonlinear model Actual Predicted
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Discontinuous Galerkin Accuracy

GPU Variant elements Time range Error t vs. elements

Radeon
R9 Fury

fetch diff —
fetch vec —
no fetch —

32768...557056
32768...557056
32768...557056

0.009...0.150
0.005...0.091
0.017...0.278

0.460
0.136
0.034

Tesla
K40c

fetch diff —
fetch vec —
no fetch —

65536...589824
65536...589824
65536...589824

0.005...0.042
0.008...0.069
0.014...0.122

0.218
0.257
0.027

Tesla
C2070

fetch diff —
fetch vec —
no fetch —

32768...294912
32768...294912
32768...294912

0.096...0.849
0.009...0.082
0.038...0.340

0.127
0.323
0.127

GTX
Titan X

fetch diff —
fetch vec —
no fetch —

131072...655360
131072...655360
131072...655360

0.011...0.054
0.006...0.027
0.034...0.167

0.403
0.024
0.003

Nonlinear model Actual Predicted
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Finite Difference Accuracy

GPU Variant n Time range Error t vs. n

Tesla
C2070

16x16 tiles —
18x18 tiles —

10752...12096
9216...10944

0.016...0.021
0.013...0.018

0.016
0.063

Tesla
K40c

16x16 tiles —
18x18 tiles —

17920...19264
18432...20160

0.021...0.025
0.026...0.032

0.045
0.058

GTX
Titan X

16x16 tiles —
18x18 tiles —

17920...19264
18432...20160

0.012...0.014
0.013...0.017

0.155
0.087

Radeon
R9 Fury

16x16 tiles — 8960...11648 0.006...0.009 0.273

Linear model Actual Predicted
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