Portable, Customizable, Black-Box GPU Performance Modeling

James Stevens

October 12, 2018

Acknowledgements Motivation

Acknowledgements

- Andreas Klöckner
- Matt Wala
- Kaushik Kulkarni

・ロン ・回 と ・ ヨン ・ ヨン

Э

Acknowledgements Motivation

Big Picture

Everyone wants fast and easy solutions to PDEs

$$\mathsf{PDE} \longrightarrow \mathsf{Solver} \longrightarrow \mathsf{Code}$$

- fast = high performance code
- easy = minimal input from user

Acknowledgements Motivation

High Performance Code

- Different code variants perform better on different machines
- Solver must produce, select these with minimal user effort

・ロン ・回 と ・ヨン ・ヨン

4 / 25

Acknowledgement Motivation

Code Variants

Loopy provides code transformation

 Need tool to choose high performing transformation set from available options

Introduction Software Components Results Motivation

What should this tool look like?

Analytical model determining which variant to produce

$$\mathcal{T}_{\mathsf{wall}}(\mathbf{n}) pprox g\left(\mathsf{feat}_0^{\mathsf{in}}(\mathbf{n}), \dots, \mathsf{feat}_j^{\mathsf{in}}(\mathbf{n}), p_0, \dots, p_k
ight)$$

- e.g., $t = madds(\mathbf{n}) \cdot p_{madd}$
- Feature: quantitative kernel characteristic
- Parameter: hardware-dependent value relating features to exec time
- ► How do we determine g? ← Key question!

Acknowledgements Motivation

What should this tool look like?

Analytical model determining which variant to produce

$$\mathcal{T}_{\mathsf{wall}}(\mathbf{n}) pprox g\left(\mathsf{feat}_0^{\mathsf{in}}(\mathbf{n}), \dots, \mathsf{feat}_j^{\mathsf{in}}(\mathbf{n}), p_0, \dots, p_k
ight)$$

- e.g., $t = madds(\mathbf{n}) \cdot p_{madd}$
- Feature: quantitative kernel characteristic
- Parameter: hardware-dependent value relating features to exec time
- ► How do we determine g? ← Key question! (topic of this presentation)

イロト イポト イヨト イヨト

6 / 25

How to Determine Model Expression

- Determine kernel features a priori
- Require minimal hardware info from user;
 GPU = black box
- Find parameters p₀,..., p_k by gathering feature values (including exec times) from set of *measurement computations* and fitting model to data

- Model expression g
 - Can we create broadly applicable g?

Memory access pattern variants

```
for (int k_outer = 0; k_outer <= int_floor_div_pos_b(-16 + n, 16); ++k_outer)
   ...
   a_fetch[...] = a[n * (16 * gid(1) + lid(1)) + 16 * k_outer + lid(0)];
   b_fetch[...] = b[n * (16 * k_outer + lid(1)) + 16 * gid(0) + lid(0)];
   ...</pre>
```

- Fetching b takes 5x longer
- Access patterns for memory access features have numerous characteristics that individually may affect execution time
 - Multiple thead index strides (any int)
 - loop stride (any int)
 - access to footprint ratio (any float)
- Broadly applicable model expression would be massive, most features unused for given computation
- data size
- direction

イロト イポト イヨト イヨト

memory type

Acknowledgements Motivation

Approach

- Let developer build model that meets their needs
 - Custom model creation
 - Custom measurement kernel set generation

・ロン ・聞と ・ほと ・ほと

臣

Simple Demo - Model Mat-mul on GTX Titan X GPU

Predict execution time for square tiled matrix multiplication

- Very simple model: $t = madds(\mathbf{n}) \cdot p_{madd}$
- Measurement computations: more matmuls

Acknowledgement Motivation

Simple Demo - Model Matmul on GTX Titan X GPU

Quick demo

・ロン ・回 と ・ ヨ と ・ ヨ と

크

Simple Demo - Model Mat-mul on GTX Titan X GPU

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction Stats Software Components Results Gener

Stats Counting Model Construction Generating Measurement Kernel Sets

Software components

- Loopy.statistics: Kernel stats counting
- Perflex: Model/feature construction
- UIPiCK: Measurement kernel set generation

Introduction Stats Counting Software Components Results Generating Measurement Kernel Sets

Counting Statistics with Loopy

Kernel stats collected

- Memory traffic
 - Track mem access strides, data size, memory type, direction, access-to-footprint ratio
- (FL)OPs: +, \times , \div , a^b , multiply-add
 - Track data type
- Synchronization
 - Launch, local barrier

Introduction Stats Counting Software Components Model Construction Results Generating Measurement Kernel Sets

Counting Statistics with Loopy

```
knl = lp.make_kernel(
    "{[i,j]: 0<=i,j<n}",
    "a[i,j]=b[j,i]")</pre>
```

How do we count?

- 1. Recursively traverse **instruction expression tree** of a Loopy kernel, counting stats for single instruction
- 2. Determine how many times instruction executes
 - Barvinok counting library
 S. Verdoolaege et. al. Counting Integer Points in Parametric Polytopes Using Barvinok's Rational Functions, Algorithmica, v.48 n.1, March 2007

Introduction Stats Counting Software Components Results Generating Measurement Kernel Sets

Creating Model and Features with Perflex

```
m = Model(
    "f_cl_wall_time_nvidia_geforce",
    "p_madd * f_op_float32_madd + "
    "p_mem * f_mem_access_global_float32_load_lstrides:{0:1;1:16}_ratio:<2")</pre>
```

Feature

- Quantitative kernel characteristic that affects execution time
- May create custom features implement as object with eval(knl) function that returns numeric value
 - Number of 32-bit global memory loads w/ local thread ID strides {0, 1} and memory access-to-footprint ratio ≤ 2
 - Number of thread groups

Introduction Stats Counting Software Components Results Generating Measurement Kernel Sets

Creating Model and Features with Perflex

Model

$$\mathcal{T}_{\mathsf{wall}}(\mathbf{n}) = \mathsf{feat}^{\mathsf{out}}(\mathbf{n}) pprox g\left(\mathsf{feat}_0^{\mathsf{in}}(\mathbf{n}), \dots, \mathsf{feat}_i^{\mathsf{in}}(\mathbf{n}), p_0, \dots, p_k
ight)$$

- Mathematical expression relating input features and parameters to output feature, differentiable with respect to parameters
- Gather features for all measurement kernels, then fit model using nonlinear least squares to solve for model parameters

イロト イポト イヨト イヨト

17/25

Introduction Stats Counting Software Components Model Construction Results Generating Measurement Kernel Sets

Generating Kernels with UIPiCK

```
tags = [
    "matmul_sq", "groups_fit:True", "dtype:float32",
    "lsize_0:16", "lsize_1:16", "tiled_prefetch:True"]
kc = KernelCollection(uipick.ALL_GENERATORS)
m_knls = kc.generate_kernels(tags)
```

- Use customizable tags to control which kernels will be produced
- Filter out, e.g.,
 - Kernels operating on float64 data
 - Kernels that don't use local mem

Modeling local-global overlap

 $t pprox \max(c_{\mathsf{global}}, c_{\mathsf{local}})$

$$s(x) = egin{cases} 0 & ext{if } x < 0, \ 1 & ext{if } x \ge 0, \end{cases}$$

$$\hat{s}(x) = (anh(p_{ ext{edge}} \cdot x) + 1)/2$$

$$t pprox c_{ ext{global}} \cdot \hat{s}(c_{ ext{global}} - c_{ ext{local}}) + c_{ ext{local}} \cdot \hat{s}(c_{ ext{local}} - c_{ ext{global}})$$

・ロン ・回 と ・ ヨン ・ ヨン

臣

Example Models

Modeling local-global overlap

Global-Local Overlap

< □ > < □ > < □ > < □ >

-∢ ≣⇒

Two types of models

Linear model:

$$tpprox \textit{c}_{ ext{overhead}} + \textit{c}_{ ext{global}} + \textit{c}_{ ext{local}}$$

Nonlinear model:

$$t \approx c_{\mathsf{overhead}} + c_{\mathsf{global}} \cdot \hat{s}(c_{\mathsf{global}} - c_{\mathsf{local}}) + c_{\mathsf{local}} \cdot \hat{s}(c_{\mathsf{local}} - c_{\mathsf{global}})$$

$$egin{aligned} c_{ ext{overhead}} &= p_{ ext{launch}} \cdot f ext{-launch} + p_{ ext{group}} \cdot f ext{-group} \ c_{ ext{global}} &= p_{ ext{gmem-0}} \cdot f ext{-gmem}_0 + \ldots + p_{ ext{gmem-i}} \cdot f ext{-gmem}_i \ c_{ ext{local}} &= (ext{on-chip work: flops, local mem, barriers}) \end{aligned}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

E.

Introduction Software Components Results Example Models Model Accuracy

Matmul Model

$$c_{\mathsf{overhead}} = p_{\mathsf{launch}} \cdot f_{\mathsf{-launch}} + p_{\mathsf{group}} \cdot f_{\mathsf{-group}}$$

$$\begin{split} c_{\text{global}} &= p_{\text{r}} \cdot f\text{-gmem}_{[1]}^{\{1,>1\}\{16,\}} \\ &+ p_{\text{bf}} \cdot f\text{-gmem}_{[28]}^{\{1,>1\}\{16,\}} \\ &+ p_{\text{af}} \cdot f\text{-gmem}_{[28]}^{\{1,>1\}\{0,\}} \\ &+ p_{\text{af}} \cdot f\text{-gmem}_{[28]}^{\{1,>1\}\{0,\}} \\ &+ p_{\text{b}} \cdot f\text{-gmem}_{[28]}^{\{1,0\}\{1,\}} \\ &+ p_{\text{a}} \cdot f\text{-gmem}_{[28]}^{\{0,>1\}\{1,\}} \end{split}$$

$$c_{\mathsf{local}} = p_{\mathsf{madd}} \cdot f\mathsf{-madd}_{< f32 >} + p_{\mathsf{loc}} \cdot f\mathsf{-}\mathsf{lmem}_{< f32 >}$$

Notation: *f*-mem/op type^{{local thread id strides}{global thread id strides} <data type>[access-to-footprint-ratio]}

・ロン ・回 と ・ ヨ と ・ ヨ と

E.

Matrix Multiplication Accuracy

GPU	Variant	n	Time range	Error	t vs. n
Tesla	prefetch —	12802816	0.0130.142	0.055	
K40c	no fetch —	12802816	0.0240.252	0.022	
GTX	prefetch —	23043840	0.0310.153	0.042	
Titan X	no fetch —	23043840	0.0800.465	0.048	
Tesla	prefetch —	7682304	0.0050.134	0.047	
C2070	no fetch —	7682304	0.0100.289	0.076	
Radeon	prefetch —	12802816	0.0080.101	0.065	
R9 Fury	no fetch —	12802816	0.0340.344	0.048	

Nonlinear model — Actual -- Predicted

・ロン ・回 と ・ ヨ と ・ ヨ と

크

Discontinuous Galerkin Accuracy

GPU	Variant	elements	Time range	Error	t vs. elements
Radeon R9 Fury	fetch diff — fetch vec — no fetch —	32768557056 32768557056 32768557056	0.0090.150 0.0050.091 0.0170.278	0.460 0.136 0.034	
Tesla K40c	fetch diff — fetch vec — no fetch —	65536589824 65536589824 65536589824	0.0050.042 0.0080.069 0.0140.122	0.218 0.257 0.027	
Tesla C2070	fetch diff — fetch vec — no fetch —	32768294912 32768294912 32768294912	0.0960.849 0.0090.082 0.0380.340	0.127 0.323 0.127	
GTX Titan X	fetch diff — fetch vec — no fetch —	131072655360 131072655360 131072655360	0.0110.054 0.0060.027 0.0340.167	0.403 0.024 0.003	

Nonlinear model — Actual -- Predicted

・ロン ・回 と ・ ヨ と ・ ヨ と

크

Finite Difference Accuracy

GPU	Variant	n	Time range	Error	t vs. n
Tesla	16×16 tiles —	1075212096	0.0160.021	0.016	
C2070	18×18 tiles —	921610944	0.0130.018	0.063	
Tesla	16x16 tiles —	1792019264	0.0210.025	0.045	
K40c	18x18 tiles —	1843220160	0.0260.032	0.058	
GTX	16x16 tiles —	1792019264	0.0120.014	0.155	
Titan X	18x18 tiles —	1843220160	0.0130.017	0.087	
Radeon R9 Fury	16×16 tiles —	896011648	0.0060.009	0.273	

Linear model — Actual -- Predicted

・ロト ・ 同ト ・ ヨト ・ ヨト

æ.