Are you lying with statistics? Pitfalls to avoid when summarizing normalized results.

James Stevens

April 29, 2019

James Stevens

University of Illinois at Urbana-Champaign

April 29, 2019 1 / 23

- 3

Motivation

In scientific computing and high performance computing, we often produce sets of **normalized values**

- Speedups
- Changes in throughput rate
- Changes in algorithm data usage

Motivation

- Sometimes it makes sense to summarize this data with a single value
- How should we do this?
- Papers addressing this question:
 - [Fleming and Wallace(1986)]
 - [Smith(1988)]

Motivating example

	Processor time (speedup vs. X)					
Benchmark	X	Y	Z			
B_1	20 (1.00)	10 (2.00)	40 (0.50)			
<i>B</i> ₂	30 (1.00)	60 (0.50)	15 (2.00)			

• How do the processors compare in terms of speedup?

 Table modified from [Fleming and Wallace(1986)]
 Image: Comparison of the second seco

Motivating example

	Processor time (speedup vs. X)					
Benchmark	X	Y	Z			
$\begin{array}{c} B_1 \\ B_2 \end{array}$	20 (1.00) 30 (1.00)	10 (2.00) 60 (0.50)	40 (0.50) 15 (2.00)			
Arithmetic mean speedup:	1.00	1.25	1.25			

 Table modified from [Fleming and Wallace(1986)]
 Image: Champaign
 Image: Champaign
 April 29, 2019
 5/23

 James Stevens
 University of Illinois at Urbana-Champaign
 April 29, 2019
 5/23

Motivating example

What if we compute speedup vs. Y instead of X?

	Proc. time (speedup vs. X)			Proc. tir	me (speedu	pvs.Y)	
Benchmark	X	Y	Z		Х	Y	Z
B ₁ B ₂	20 (1.00) 30 (1.00)	10 (2.00) 60 (0.50)	40 (0.50) 15 (2.00)		20 (0.50) 30 (2.00)	10 (1.00) 60 (1.00)	40 (0.25) 15 (4.00)
A. mean speedup:	1.00	1.25	1.25		1.25	1.00	2.13

Tables modified from [Fleming and Wallace(1986)] $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

James Stevens

University of Illinois at Urbana-Champaign

April 29, 2019 6 / 23

What can we conclude from this example?

 $\bullet\,$ Arithmetic means of speedups and similarly normalized results are meaningless^1

¹[Fleming and Wallace(1986)]

James Stevens

University of Illinois at Urbana-Champaign

April 29, 2019 7 / 23

Why does the arithmetic mean fail?

For benchmark *i*, if

- X is A times faster than Y and
- Y is B times faster than Z,

then

• **X** is $A \cdot B$ times faster than **Z**.

Suppose we want this logic to hold for mean speedups

Why does the arithmetic mean fail?

	$s_i^{X_VY}$	s_i^{YvZ}	s_i^{XvZ}
B_1	0.50	4.00	2.00
<i>B</i> ₂	2.00	0.25	0.50
A. mean	1.25	2.13	1.25

Mean speedup notation:

$$\mathsf{mean}(s_0^{X_VY}, \dots, s_n^{X_VY}) = s_m^{X_VY}$$

イロト イポト イヨト イヨト 三日

With arithmetic mean, $s_m^{X_vY} \cdot s_m^{Y_vZ} = 2.66 \neq s_m^{X_vZ}$

Arithmetic mean does not have multiplicative property

Multiplicative property

We would like mean function for speedups to have multiplicative property,

$$f(a_1 \cdot b_1, ..., a_n \cdot b_n) = f(a_1, ..., a_n) \cdot f(b_1, ..., b_n),$$

which does not hold for arithmetic mean:

$$\frac{1}{n} \cdot \left(\sum_{i=1}^{n} a_i \cdot b_i\right) \neq \frac{1}{n} \cdot \left(\sum_{i=1}^{n} a_i\right) \cdot \frac{1}{n} \cdot \left(\sum_{i=1}^{n} b_i\right)$$

James Stevens

イロト イポト イヨト イヨト

Alternative approach

Can we summarize these speedups in a more meaningful way?

イロト イポト イヨト イヨト 三日

Alternative approach

Can we summarize these speedups in a more meaningful way?

• One option: the geometric mean

$$\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$$

イロト イポト イヨト イヨト 三日

The geometric mean

• Geometric interpretation: find edge length of hypercube with same volume as hyperrectangle with given edge lengths

$$(2\cdot 4\cdot 8)^{1/3}=4$$

• Has multiplicative property (if data sets have equal size)

$$\left(\prod_{i=1}^n a_i \cdot b_i\right)^{\frac{1}{n}} = \left(\prod_{i=1}^n a_i\right)^{\frac{1}{n}} \cdot \left(\prod_{i=1}^n b_i\right)^{\frac{1}{n}}$$

University of Illinois at Urbana-Champaign

Mean of product == product of means?

	s_i^{XvY}	s_i^{YvZ}	s_i^{XvZ}
B_1	0.50	4.00	2.00
B_2	2.00	0.25	0.50
A. mean	1.25	2.13	1.25

Mean speedup notation:

$$\mathsf{mean}(s_0^{X_VY},...,s_n^{X_VY})=s_m^{X_VY}$$

With arithmetic mean, $s_m^{X_vY} \cdot s_m^{Y_vZ} = 2.66 \neq s_m^{X_vZ}$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ●

Mean of product == product of means?

	$s_i^{X_VY}$	s_i^{YvZ}	s_i^{XvZ}
B_1	0.50	4.00	2.00
<i>B</i> ₂	2.00	0.25	0.50
A. mean	1.25	2.13	1.25
G. mean	1.00	1.00	1.00

Mean speedup notation:

$$\mathsf{mean}(s_0^{X_VY}, \dots, s_n^{X_VY}) = s_m^{X_VY}$$

With arithmetic mean, $s_m^{X_vY} \cdot s_m^{Y_vZ} = 2.66 \neq s_m^{X_vZ}$

With geometric mean, $s_m^{X_VY} \cdot s_m^{Y_VZ} = 1.00 = s_m^{X_VZ}$

April 29, 2019 14 / 23

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Speedup results with geometric mean

	Proc. time (speedup vs. X)			Proc. tir	me (speedu	p vs. Y)	
Benchmark	Х	Y	Z		Х	Y	Z
B_1 B_2	20 (1.00) 30 (1.00)	10 (2.00) 60 (0.50)	40 (0.50) 15 (2.00)		20 (0.50) 30 (2.00)	10 (1.00) 60 (1.00)	40 (0.25) 15 (4.00)
G. mean speedup:	1.00	1.00	1.00		1.00	1.00	1.00

Tables modified from [Fleming and Wallace(1986)] April 29, 2019

James Stevens

University of Illinois at Urbana-Champaign

15/23

Speedup results with geometric mean

	Proc. time (speedup vs. X)			Proc. ti	me (speedu	o vs. Y)
Benchmark	X	Y	Z	Х	Y	Z
B_1 B_2	20 (1.00) 30 (1.00)	10 (2.00) 60 (0.50)	40 (0.50) 15 (2.00)	20 (0.50) 30 (2.00)	10 (1.00) 60 (1.00)	40 (0.25) 15 (4.00)
G. mean speedup:	1.00	1.00	1.00	1.00	1.00	1.00
	Proc. ti	me (speedup	vs. X)	Proc. ti	ime (speedup	vs. Y)
Benchmark	Proc. ti X	me (speedup Y	vs. X) Z	Proc. ti	ime (speedup Y	vs. Y) Z
Benchmark B ₁ B ₂			,		、· ·	,

Tables modified from [Fleming and Wallace(1986)]

James Stevens

University of Illinois at Urbana-Champaign

April 29, 2019 15 / 23

Satisfied with geometric mean of speedups?

	Proc. time (speedup vs. X)			Proc. tir	me (speedu	p vs. Y)	
Benchmark	Х	Υ	Z		Х	Y	Z
B_1 B_2	20 (1.00) 30 (1.00)	10 (2.00) 60 (0.50)	40 (0.50) 15 (2.00)		20 (0.50) 30 (2.00)	10 (1.00) 60 (1.00)	40 (0.25) 15 (4.00)
G. mean speedup:	1.00	1.00	1.00		1.00	1.00	1.00

Observe any issues with this?

 Tables modified from [Fleming and Wallace(1986)]

 James Stevens

 University of Illinois at Urbana-Champaign

 April 29, 2019

 16/23

Satisfied with geometric mean of speedups?

	Proc. time (speedup vs. X)		Proc. time (spee			Proc. tir	me (speedu	p vs. Y)
Benchmark	Х	Υ	Z		Х	Y	Z	
B_1 B_2	20 (1.00) 30 (1.00)	10 (2.00) 60 (0.50)	40 (0.50) 15 (2.00)		20 (0.50) 30 (2.00)	10 (1.00) 60 (1.00)	40 (0.25) 15 (4.00)	
G. mean speedup:	1.00	1.00	1.00		1.00	1.00	1.00	

Observe any issues with this? Results consistent regardless of normalization, but is this a good way to characterize this data?

- What if sum of results has meaning? Or weighted sum/average?
- Lost information about total execution times

 Tables modified from [Fleming and Wallace(1986)]
 Image: Comparison of the second sec

Another perspective

[Smith(1988)]: yes, arithmetic mean of *speedups* (or flop rates) is meaningless, but total or weighted **total exec. time is more informative**

- Geometric mean of normalized values yields consistent, but uninformative result
- Instead, perform appropriate aggregate computation *before* normalizing, not after
- Single-value measure for benchmark times should be directly proportional to total time consumed by benchmarks
 - G. mean of times fails this test
 - G. mean of speedups lacks this info

	Proc. time				
	Х	Y	Z		
B_1	20	10	40		
B ₂	30	60	15		
Sum	50	70	55		
A. mean	25.0	35.0	27.5		
G. mean	24.5	24.5	24.5		
G. mean speedups	1.00	1.00	1.00		

• • • • • • • • •

Another perspective

[Smith(1988)]: use **harmonic mean** to summarize performance rates (flop/s) because equivalent to dividing total ops by total time¹

• Harmonic mean: $n \cdot \left(\sum_{i=1}^{n} a_i^{-1}\right)^{-1}$

• If B_i executes f_i flops in t_i seconds,

$$\underbrace{n \cdot \left(\sum_{i=1}^{n} \left(\frac{f_i}{t_i}\right)^{-1}\right)^{-1}}_{\text{Harmonic mean of rates}} = n \cdot \left(\sum_{i=1}^{n} \frac{t_i}{f_i}\right)^{-1} \stackrel{?}{=} \underbrace{\sum_{i=1}^{n} f_i}_{\text{total flop/s}}$$

Another perspective

[Smith(1988)]: use **harmonic mean** to summarize performance rates (flop/s) because equivalent to dividing total ops by total time¹

• Harmonic mean: $n \cdot \left(\sum_{i=1}^{n} a_i^{-1}\right)^{-1}$

• If B_i executes f_i flops in t_i seconds,

$$\underbrace{n \cdot \left(\sum_{i=1}^{n} \left(\frac{f_i}{t_i}\right)^{-1}\right)^{-1}}_{\text{Harmonic mean of rates}} = n \cdot \left(\sum_{i=1}^{n} \frac{t_i}{f_i}\right)^{-1} \stackrel{?}{=} \underbrace{\sum_{i=1}^{n} f_i}_{\text{total flop/s}}$$

• ¹Only true if f_i constant across programs, which paper assumes

(人間) シスヨン スヨン ヨ

Other uses of geometric mean

• To treat constant factor changes equally

• If we consider 20% error twice as bad as 10% error, and 40% error twice as bad as 20% error, and we want

mean(0.1, 0.2, 0.4) = 0.2

• When product of values has meaning, e.g., compound annual growth rate

Paper 1 conclusions

Three rules from [Fleming and Wallace(1986)]:

- 1. Do not use the arithmetic mean to average normalized numbers
- 2. Use the geometric mean to average normalized numbers
- 3. Use the sum (or arithmetic mean) of raw, unnormalized results whenever this "total" has some meaning

Paper 2 conclusions

Conclusions from [Smith(1988)]:

- Total exec. time of benchmarks more informative than mean speedup
- Perform appropriate aggregate computation *before* normalizing, not after
- Use harmonic mean to summarize flop rates (only works w/constant flop counts)

Conclusions

Questions when choosing mean

- Are values normalized? If so, should we aggregate before normalizing?
- What properties should mean have?
- Does (weighted) sum of values have meaning?
- Does product of values have meaning?
- How large is variance? Large variance reduces meaningfulness of means. Does it even make sense to summarize data with single value?
 - "The uselessness of arithmetic mean as a performance predictor cannot be emphasized enough. Giving additional statistics such as standard deviation [...] does not mitigate the situation. [Adding] standard deviation is similar to saying: Here is a meaningless performance measure, and here is a measure of just how meaningless it is."²

²[Smith(1988)]

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Bibliography

Philip J Fleming and John J Wallace.

How not to lie with statistics: the correct way to summarize benchmark results.

Communications of the ACM, 29(3):218–221, 1986.

James E Smith.

Characterizing computer performance with a single number. Communications of the ACM, 31(10):1202–1206, 1988.