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Motivation

Question

Can we build a system that assists a user in:

Applying program transformations for
optimization

Exploring search space of mathematically
equivalent program variants

Including evaluation of performance stats

Subject to the constraints that:

Expression of mathematical intent is invariant
to code transformations

Source code is not manually written/modified

Program variants can be easily reproduced
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Motivation

Question

In building this system, can we answer the following additional questions:

Which program variants are reachable?

Can system scale with program size while meeting desired criteria?
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Motivation

Primary Components

Loopy: Program abstraction and code generation engine

Loopy-UI: Visual interface for optimizing Loopy programs
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Motivation

Motivation for Program Abstraction and Code Generation

Hand- Compiler
Parallel (GPU) code dev: written directives Goal

Low development time X X
Low code modification time X X
High P(optimal performance) X X
Low P(coding errors) X X
Modify source at runtime X

P(X): probability of X
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Motivation

Loopy Example

Programming system for array computations providing GPU/CPU
code generation

Separates mathematical intent from computational minutiae

Example Loopy program: solve wave equation utt = c · uxx
knl = lp.make_kernel(

"[nx,nt] -> {[x, t]: 1<=x<nx-1 and 0<=t<nt}",

"""

u[x, t+2] = (

dt**2/dx**2 * (u[x+1, t+1] - 2*u[x, t+1] + u[x-1, t+1])

+ 2*u[x, t+1] - u[x, t])

""")

knl = lp.prioritize_loops(knl, ("t", "x"))

ux,t-1

ux,t+1

ux,t ux+1,tux-1,t

[Klöckner et al.(2016)],[Klöckner(2015)],[Klöckner(2014)]
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Motivation

Loopy Example

Loopy-generated code:

__kernel void [...] wave_equation(float const dt, float const dx, int

const nt, int const nx, __global float *__restrict__ u)

{

for (int t = 0; t <= -1 + nt; ++t)

for (int x = 1; x <= -2 + nx; ++x)

u[(2 + nt) * x + 2 + t] =

2.0f * u[(2 + nt) * x + 1 + t] +

((dt * dt) / (dx * dx)) * (u[(2 + nt) * (1 + x) + 1 + t] + -1.0

f * 2.0f * u[(2 + nt) * x + 1 + t] + u[(2 + nt) * (-1 + x)

+ 1 + t]) +

-1.0f * u[(2 + nt) * x + t];

}

Loopy program transformations:

Loop splitting, unrolling, vectorization, parallelization, prefetching, ...
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Motivation

Desired System Capabilities

( Loopy capability)

Describe mathematical intent independently of implementation

Optimize algorithm without manually writing/modifying

source code or
higher level code that generates source (e.g., Python)

Visualize + interactively explore search space of optimization
strategies

with immediate evaluation of performance and other stats

Without rewriting code, recreate

program variant source code
interactive search space of multiple program variants
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Demo

Demos
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Key Tools

Summary of Key UI Capabilities

Interactive variant exploration tree with stats and transformation info
View, compare, and evaluate multiple variant paths simultaneously
Reload tree to revisit search space, e.g., on new hardware
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Key Tools

Summary of Key UI Capabilities

Interactive source code
Access and execute relevant transformations

without writing/modifying code and
without extensive knowledge of transformation system

View performance-relevant program info, e.g., mouse
hover for memory access pattern visualization
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Key Tools

Summary of Key UI Capabilities

Determine mathematical intent independently of implementation
strategy

Address efficiency concerns without changing mathematical description,
e.g., when moving to new hardware
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Key Tools

Summary of Key UI Capabilities

Export to production: save python
transformation chain or source

Generate source on new hardware
Revisit search tree on new hardware

Import program from existing Loopy code

Use UI with kernel generated within larger program

# [...1000s of lines of prep code...]

knl = generate_kernel_with_complex_machinery(...)

launch_loopy_ui_with(knl, browser=default_browser)
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Related Work

Related Work

Related work differences:

Method of transformation application

Interact with abstract representations/diagrams of program
Modify source directly (manually re-write)

Zinenko et al.(2018) [Zinenko et al.(2018)Zinenko, Huot, and Bastoul]
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Related Work

Related Work

Related work differences:

Method of transformation application

Interact with abstract representations/diagrams of program
Modify source directly (manually re-write)

Papenhausen et al.(2016)
[Papenhausen et al.(2016)Papenhausen, Mueller, Langston, Meister, and Lethin]

Ben-Nun et al.(2019)
[Ben-Nun et al.(2019)Ben-Nun, de Fine Licht, Ziogas, Schneider, and Hoefler]
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Related Work

Related Work

Related work differences:

Input representation

Source, restricted python/matlab, numpy functions

Search space accessibility/visibility

Most only display 1-d program history, if any
None(?) allow storage/reuse of full transformation tree w/branches
None(?) allow simultaneous viewing of stats for multiple variants

Accessability of program internal representation

With Loopy, user can directly interact with a program IR that is
amenable to understanding (contrast with LLVM IR)

Scope of transformations available
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Conclusions

Conclusions and Future Work

Accomplished in current (alpha) version of UI:

Kernel and transformation input via UI

Interactive source code (limited transformation options)

Statistics gathering

Interactive, navigable variant tree displaying stats

Saving source and Loopy script to regenerate Loopy kernel
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Conclusions

Conclusions and Future Work

Coming soon:

More transformations and info available via interactive code

E.g., hover over array access for memory access pattern
visualization

Store and reload variant tree

Launch UI with existing Loopy kernel from Python script

Tree improvements: clearer communication of
transformations, segment hiding

Fix bugs and otherwise improve user experience

Get and incorporate feedback from Loopy users

Convenient module installation and setup
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Conclusions

Want to try it?

1 Install Loopy: https://github.com/inducer/loopy

2 Install Loopy-UI: https://gitlab.tiker.net/jdsteve2/loopy-ui
Get repo permission: jdsteve2@illinois.edu
Follow README for toolchain setup
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Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul.

Visual program manipulation in the polyhedral model.
ACM Trans. Archit. Code Optim., 15(1), March 2018.
ISSN 1544-3566.
doi: 10.1145/3177961.
URL https://doi.org/10.1145/3177961.

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 22 / 20

https://doi.org/10.1145/3177961


Conclusions

Tiled Matrix-Matrix Multiplication with Prefetching
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