
An Interactive Visual User Iterface
for Program Optimization Using Loopy

James Stevens

April 7, 2020

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 1 / 20

Acknowledgements

Acknowledgements

Loopy-UI:

Summer Xia

Eunsun Lee

Juefei Chen

Feng Hou

Andreas Klöckner

Bogdan Enache

Loopy:

Andreas Klöckner

Matt Wala

Kaushik Kulkarni

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 2 / 20

Motivation

Question

Can we build a system that assists a user in:

Applying program transformations for
optimization

Exploring search space of mathematically
equivalent program variants

Including evaluation of performance stats

Subject to the constraints that:

Expression of mathematical intent is invariant
to code transformations

Source code is not manually written/modified

Program variants can be easily reproduced

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 3 / 20

Motivation

Question

In building this system, can we answer the following additional questions:

Which program variants are reachable?

Can system scale with program size while meeting desired criteria?

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 4 / 20

Motivation

Primary Components

Loopy: Program abstraction and code generation engine

Loopy-UI: Visual interface for optimizing Loopy programs

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 5 / 20

Motivation

Motivation for Program Abstraction and Code Generation

Hand- Compiler
Parallel (GPU) code dev: written directives Goal

Low development time X X
Low code modification time X X
High P(optimal performance) X X
Low P(coding errors) X X
Modify source at runtime X

P(X): probability of X

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 6 / 20

Motivation

Loopy Example

Programming system for array computations providing GPU/CPU
code generation

Separates mathematical intent from computational minutiae

Example Loopy program: solve wave equation utt = c · uxx
knl = lp.make_kernel(

"[nx,nt] -> {[x, t]: 1<=x<nx-1 and 0<=t<nt}",

"""

u[x, t+2] = (

dt**2/dx**2 * (u[x+1, t+1] - 2*u[x, t+1] + u[x-1, t+1])

+ 2*u[x, t+1] - u[x, t])

""")

knl = lp.prioritize_loops(knl, ("t", "x"))

ux,t-1

ux,t+1

ux,t ux+1,tux-1,t

[Klöckner et al.(2016)],[Klöckner(2015)],[Klöckner(2014)]

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 7 / 20

Motivation

Loopy Example

Loopy-generated code:

__kernel void [...] wave_equation(float const dt, float const dx, int

const nt, int const nx, __global float *__restrict__ u)

{

for (int t = 0; t <= -1 + nt; ++t)

for (int x = 1; x <= -2 + nx; ++x)

u[(2 + nt) * x + 2 + t] =

2.0f * u[(2 + nt) * x + 1 + t] +

((dt * dt) / (dx * dx)) * (u[(2 + nt) * (1 + x) + 1 + t] + -1.0

f * 2.0f * u[(2 + nt) * x + 1 + t] + u[(2 + nt) * (-1 + x)

+ 1 + t]) +

-1.0f * u[(2 + nt) * x + t];

}

Loopy program transformations:

Loop splitting, unrolling, vectorization, parallelization, prefetching, ...

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 8 / 20

Motivation

Desired System Capabilities

(Loopy capability)

Describe mathematical intent independently of implementation

Optimize algorithm without manually writing/modifying

source code or
higher level code that generates source (e.g., Python)

Visualize + interactively explore search space of optimization
strategies

with immediate evaluation of performance and other stats

Without rewriting code, recreate

program variant source code
interactive search space of multiple program variants

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 9 / 20

Demo

Demos

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 10 / 20

Key Tools

Summary of Key UI Capabilities

Interactive variant exploration tree with stats and transformation info
View, compare, and evaluate multiple variant paths simultaneously
Reload tree to revisit search space, e.g., on new hardware

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 11 / 20

Key Tools

Summary of Key UI Capabilities

Interactive source code
Access and execute relevant transformations

without writing/modifying code and
without extensive knowledge of transformation system

View performance-relevant program info, e.g., mouse
hover for memory access pattern visualization

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 12 / 20

Key Tools

Summary of Key UI Capabilities

Determine mathematical intent independently of implementation
strategy

Address efficiency concerns without changing mathematical description,
e.g., when moving to new hardware

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 13 / 20

Key Tools

Summary of Key UI Capabilities

Export to production: save python
transformation chain or source

Generate source on new hardware
Revisit search tree on new hardware

Import program from existing Loopy code

Use UI with kernel generated within larger program

[...1000s of lines of prep code...]

knl = generate_kernel_with_complex_machinery(...)

launch_loopy_ui_with(knl, browser=default_browser)

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 14 / 20

Related Work

Related Work

Related work differences:

Method of transformation application

Interact with abstract representations/diagrams of program
Modify source directly (manually re-write)

Zinenko et al.(2018) [Zinenko et al.(2018)Zinenko, Huot, and Bastoul]

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 15 / 20

Related Work

Related Work

Related work differences:

Method of transformation application

Interact with abstract representations/diagrams of program
Modify source directly (manually re-write)

Papenhausen et al.(2016)
[Papenhausen et al.(2016)Papenhausen, Mueller, Langston, Meister, and Lethin]

Ben-Nun et al.(2019)
[Ben-Nun et al.(2019)Ben-Nun, de Fine Licht, Ziogas, Schneider, and Hoefler]

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 16 / 20

Related Work

Related Work

Related work differences:

Input representation

Source, restricted python/matlab, numpy functions

Search space accessibility/visibility

Most only display 1-d program history, if any
None(?) allow storage/reuse of full transformation tree w/branches
None(?) allow simultaneous viewing of stats for multiple variants

Accessability of program internal representation

With Loopy, user can directly interact with a program IR that is
amenable to understanding (contrast with LLVM IR)

Scope of transformations available

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 17 / 20

Conclusions

Conclusions and Future Work

Accomplished in current (alpha) version of UI:

Kernel and transformation input via UI

Interactive source code (limited transformation options)

Statistics gathering

Interactive, navigable variant tree displaying stats

Saving source and Loopy script to regenerate Loopy kernel

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 18 / 20

Conclusions

Conclusions and Future Work

Coming soon:

More transformations and info available via interactive code

E.g., hover over array access for memory access pattern
visualization

Store and reload variant tree

Launch UI with existing Loopy kernel from Python script

Tree improvements: clearer communication of
transformations, segment hiding

Fix bugs and otherwise improve user experience

Get and incorporate feedback from Loopy users

Convenient module installation and setup

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 19 / 20

Conclusions

Want to try it?

1 Install Loopy: https://github.com/inducer/loopy

2 Install Loopy-UI: https://gitlab.tiker.net/jdsteve2/loopy-ui
Get repo permission: jdsteve2@illinois.edu
Follow README for toolchain setup

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 20 / 20

https://github.com/inducer/loopy
https://gitlab.tiker.net/jdsteve2/loopy-ui

Conclusions

Bibliography I

Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider, and Torsten Hoefler.

Stateful dataflow multigraphs: A data-centric model for performance portability on heterogeneous architectures.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC
’19, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362290.
doi: 10.1145/3295500.3356173.
URL https://doi.org/10.1145/3295500.3356173.

Andreas Klöckner.

Loo.Py: Transformation-based Code Generation for GPUs and CPUs.
In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array
Programming, ARRAY’14, pages 82:82–82:87, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2937-8.
DOI: 10.1145/2627373.2627387.

Andreas Klöckner.

Loo.Py: From Fortran to Performance via Transformation and Substitution Rules.
In Proceedings of the 2Nd ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array
Programming, ARRAY 2015, pages 1–6, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3584-3.
DOI: 10.1145/2774959.2774969.

E. Papenhausen, K. Mueller, M. H. Langston, B. Meister, and R. Lethin.

An interactive visual tool for code optimization and parallelization based on the polyhedral model.
In 2016 45th International Conference on Parallel Processing Workshops (ICPPW), pages 309–318, 2016.

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 21 / 20

https://doi.org/10.1145/3295500.3356173
http://doi.acm.org.proxy2.library.illinois.edu/10.1145/2627373.2627387
http://doi.acm.org/10.1145/2774959.2774969

Conclusions

Bibliography II

Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul.

Visual program manipulation in the polyhedral model.
ACM Trans. Archit. Code Optim., 15(1), March 2018.
ISSN 1544-3566.
doi: 10.1145/3177961.
URL https://doi.org/10.1145/3177961.

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 22 / 20

https://doi.org/10.1145/3177961

Conclusions

Tiled Matrix-Matrix Multiplication with Prefetching

James Stevens University of Illinois at Urbana-Champaign April 7, 2020 23 / 20

	Acknowledgements
	Motivation
	Demo
	Key Tools
	Related Work
	Conclusions

