
Preface

For Committee: Slides containing key recent work are starred: F
Summary of New Accomplishments Since Feb. Meeting

Extension of statement ordering semantics to precisely verify schedules
w/GPU parallelism in the presence of local and global barriers

Based on novel ’lexicographic barrier segment count’ procedure
Enables reasoning about dependency violations across work-items

Handling of dependencies during set of complex transformations
Enables pre-transform dependency expression w/post-transform check

Applying dependency checking to transformed wave example

Demonstrate ingestion of a complex, application-level benchmark
(NPB LU), and applicability of semantics therein

Program transformation UI: Expand scope of transformations, esp.
via direct code manipulation; improve scalability of action counts with
respect to search space size

Demonstrate UI comprehensiveness, scalability in complex application

(non-committee members may ignore)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 0 / 60

Program Transformation and Code Generation for
Developing, Modeling, and Optimizing GPU Programs

Dissertation Defense

James Stevens
PhD Candidate

July 2, 2021

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 1 / 60

Introduction

Acknowledgements

Advisor:

Andreas Klöckner
Loopy, Loopy-UI, Perflex, UIPiCK

Thesis Committee:

Andreas Klöckner

William Gropp

Edgar Solomonik

John Owens

Loopy:

Matt Wala

Kaushik Kulkarni

Loopy-UI:

Summer Xia

Eunsun Lee

Juefei Chen

Feng Hou

Bogdan Enache

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 2 / 60

Introduction

Challenge

High-performance computation crucial for numerous scientific and
engineering problems

Images: [1], [2], [3]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 3 / 60

https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Computer_simulation

Introduction

Challenge

Performance requires tailoring algorithm to architecture

Can we obtain benefits of both fully manual and fully automated
approaches to program transformation and optimization using

partially automated, human-guided strategies?

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 4 / 60

Introduction

Contributions: Mechanisms to Address Challenge

1 Programming system providing transformation-based code generation
for GPUs and CPUs

2 Mechanism for balancing accuracy and scope in cross-machine
black-box GPU performance modeling

3 Visual user interface for code transformation, analysis, and
optimization

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 5 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal Dependency Verification and Loop Nesting Semantics in Loopy

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 6 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Motivating Loopy Example

Programming system for array computations
providing GPU/CPU code generation

Separates mathematical intent from efficiency
decisions

ux,t+1 ux+1,t+1
ux+2,t+1

ux+1,t+2

ux+1,t

t

x

utt = c · uxx

Example Loopy1 program: solve wave equation
knl = lp.make_kernel(

"[nx,nt] -> {[x, t]: 0<=x<nx and 0<=t<nt}", # Domain

"u[t+2,x+1] = 2*u[t+1,x+1] + dt**2/dx**2" # Statement

" * (u[t+1,x+2] - 2*u[t+1,x+1] + u[t+1,x]) - u[t,x+1] {id=stmt}")

1 [Klo14], [Klo15], [KWW16]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 7 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Motivating Loopy Example

Transformations:
knl = lp.add_dtypes(knl, {"u,dx,dt": np.float32})

knl = lp.split_iname(knl, "x", 14)

knl = lp.assume(knl, "nx % 14 = 0 and nt >= 1 and nx >= 1")

knl = lp.tag_inames(knl, "x_outer:g.0, x_inner:l.0")

Loopy-generated code:

... loopy_kernel(float const dt, ..., __global float *__restrict__ u)

{

for (int t = 0; t <= -1 + nt; ++t)

u[(nx + 2) * (t + 2) + 1 + 14 * gid(0) + lid(0)] =

2.0f * u[(nx + 2) * (t + 1) + 1 + 14 * gid(0) + lid(0)] + ...;

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 8 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Motivating Loopy Example

Are dependencies satisfied?

Apply diamond tiling2 to expose further
parallelism?

Correctness requires precise ordering of
statement instances

Prior Loopy:

Dependency not capturable, no correctness
verification
No guarantee of desired loop nest structure

ux,t+1 ux+1,t+1
ux+2,t+1

ux+1,t+2

ux+1,t

t

x

x

t

0 0

1 1 1

2 2

3 3 3

4 4

2 [BPB12], [BOH+15], [BBP17]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 9 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Motivating Loopy Example

Manually determine whether dependencies violated?

OpenCL generated after diamond-tiling transformation:

__kernel void [...] wave_stencil([...])
{
for (int tt = 0; tt <= (14 + nt) / 32; ++tt)
for (int tparity = 0; tparity <= (1 + -1 * nt + 32 * tt >= 0 || (17 + -1 * nx + -1 * nt + 32 * tt >=

0 && -2 + nt + -32 * tt >= 0) ? 0 : 1); ++tparity)
for (int tx = 0; tx <= (-1 * nt + 16 * tparity + 32 * tt >= 0 && 14 + nt + -16 * tparity + -32 * tt

>= 0 && 14 + nx + nt + -32 * tparity + -32 * tt >= 0 ? -1 * tparity + -1 * tt + (14 + nx +
nt) / 32 : -1 * tparity + (15 + nx + 16 * tparity) / 32); ++tx)

for (int itt = (tt == 0 && tparity == 0 ? 0 : (-1 + tparity + 2 * tt >= 0 && nx + -16 * tparity +
-32 * tx >= 0 ? -15 : -15 + -1 * nx + 16 * tparity + 32 * tx)); itt <= (-16 + nt + -16 *
tparity + -32 * tt >= 0 && nx + -16 * tparity + -32 * tx >= 0 ? 15 : (15 + -1 * nt + 16 *
tparity + 32 * tt >= 0 && 16 + nx + -1 * nt + 32 * tt + -32 * tx >= 0 && 14 + nx + nt + -32
* tparity + -32 * tt + -32 * tx >= 0 ? -1 + nt + -16 * tparity + -32 * tt : 15 + nx + -16

* tparity + -32 * tx)); ++itt)
for (int itx = (tx == 0 && tparity == 0 && itt + 32 * tt >= 0 ? 16 : ((-1 + -1 * itt >= 0 && itt

+ 16 * tparity + 32 * tt >= 0 && -16 + itt + 16 * tparity + 32 * tx >= 0) || (tx == 0 &&
-1 + tparity == 0 && -1 + -1 * itt >= 0) ? -1 * itt : itt)); itx <= (itt >= 0 && -16 +

nx + itt + -16 * tparity + -32 * tx >= 0 ? 31 + -1 * itt : (-1 + -1 * itt >= 0 && itt +
16 * tparity + 32 * tt >= 0 && -16 + nx + -1 * itt + -16 * tparity + -32 * tx >= 0 ? 31 +
itt : 15 + nx + -16 * tparity + -32 * tx)); ++itx)

u[(2 + nx) * (2 + 32 * tt + 16 * tparity + itt) + -15 + 16 * tparity + 32 * tx + itx] = 2.0f *
u[(2 + nx) * (1 + 32 * tt + 16 * tparity + itt) + -15 + 16 * tparity + 32 * tx + itx] +
((dt * dt) / (dx * dx)) * (u[(2 + nx) * (1 + 32 * tt + 16 * tparity + itt) + -14 + 16 *
tparity + 32 * tx + itx] + -1.0f * 2.0f * u[(2 + nx) * (1 + 32 * tt + 16 * tparity +

itt) + -15 + 16 * tparity + 32 * tx + itx] + u[(2 + nx) * (1 + 32 * tt + 16 * tparity +
itt) + -16 + 16 * tparity + 32 * tx + itx]) + -1.0f * u[(2 + nx) * (32 * tt + 16 *
tparity + itt) + -15 + 16 * tparity + 32 * tx + itx];

}

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 10 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Motivating Loopy Example

Need dependencies that:

Are well-defined

Operate at statement-instance level

Survive transformations

Can be automatically checked for violations

Are user-accessible

ux,t+1 ux+1,t+1
ux+2,t+1

ux+1,t+2

ux+1,t

t

x

x

t

0 0

1 1 1

2 2

3 3 3

4 4

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 11 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Related Work

3

Polyhedral Model of Computation

Statements executed over points in polyhedral iteration domain

Bounded by affine inequalities

Enable mathematical reasoning about execution order, dependencies,
correctness, transformations

Facilitates automated transformation application

3 [ZHB18]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 12 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Related Work (Selected)

Largely automated

PLuTo4, PoCC5,
Polly6, PPCG7,
RStream8, PIPS9

Minimize affine objective
func. while obeying deps

(−) Expensive

(−) Less user exposure to
heuristics, transform
decisions

More user-guided

Alpha/AlphaZ 10: expression-based

Space, time arise via transformations
(−) Very abstract; hard to write, refactor

CHiLL11: Composition of affine transforms

Automatically generated data deps
(−) Only affine transforms; C-based
(−) Scripting language is stateful w/

inflexible addressing

DaCe 12: Data-flow graph IR, transforms

(−) More restrictive, graph-based prog. IR

Details in Appendix 6 of presentation and Section 3.1.1 of [dissertation]

4 [BHRS08] 5 [PBB+09] 6 [GGL12] 7 [VJC+13] 8 [MVW+11], [MLV+09] 9 [IJT91]
10 [Mau89], [YGK+13], [YBG+12] 11 [CCH08], [ZVBH16] 12 [BNdFLZ+19]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 13 / 60

https://jamesdstevens.com/index.php/media/

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal, Verifiable Dependency Semantics

statement: assignment to scalar or scalar array elements,
executed over integer points in polyhedral domain

statement instance: instance of statement for one integer point

statement︷ ︸︸ ︷
u[t+2,x+1] = 2*u[t+1,x+1] + ... at x = 5, t = 6︸ ︷︷ ︸

statement instance

Define dependencies as ‘happens-before’ relationship between
statement instances

IR: maps involving statement instances, lexicographical orderings;
similar to lit13

13 [GGL12], [VJC+13], [YGK+13], [YBG+12]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 14 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal, Verifiable Dependency Semantics

Dependency: Dm,n ⊆ Sm × Sn sm = (m, i0, ..., ik) ∈ Sm

Sm, Sn: Sets of all statement instances for statements m, n
sm: Statement instance (unique statement ID and set of

integer values for sequential loop indices)

Dependency for wave stencil: ux,t+1 ux+1,t+1
ux+2,t+1

ux+1,t+2

ux+1,t

t

x

D0,0 = {
(
(0, x ′, t ′), (0, x , t)

)
:
(
(t = t ′ + 1 ∧ x ′ − 1 ≤ x ≤ x ′ + 1)

∨ (t = t ′ + 2 ∧ x = x ′)
)
}

In polyhedral

representation

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 15 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal Statement Ordering Semantics

To check dependency Dm,n, construct pairwise statement instance
ordering (SIO):

OPm,n ⊆ Sm × Sn,

mapping each instance of Sm to all instances of Sn executing later in
linearized program

Dependency satisfaction check:

Dm,n

?
⊆ OPm,n

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 16 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal Statement Ordering Semantics F

To construct SIO, first construct three pairwise program schedules

Intra-thread, intra-group, global

Map statement instances to points in lexicographical space

Intra-thread schedule: execution within same work-item (thread)

Pthread
m,n ⊆ {Sm ∪ Sn} × Lthread l∗ = (l0, . . . , ldthread−1) ∈ Lthread

Intra-thread SIO:

OPthread
m,n = Pthread

m ◦ OLthread ◦ (Pthread
n)−1 ⊆ Sm × Sn

OLthread

: maps each point in lex. ordering to every later point

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 17 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal Statement Ordering Semantics F

Programmatic construction of intra-group schedule, SIO

Statement instances executed within
different work-items in same work-group

Ordering mediated by local barriers
Map statement instances to
barrier-delimited lex.-numbered program
section

Avoid unwanted before-after SIO pairs at
top, bottom of loops

Combine Pgroup
m,n with specialized lex. order

mapping OLgroup

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 18 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal Statement Ordering Semantics F

Start with standard lex. ordering OLgroup

full

Subtract subset of before-after pairs Rgroup

to get OLgroup

Rgroup =

(⋃
i

(
Rgroup

i-enter ∪ Rgroup
i-exit ∪ Rgroup

i-step

))+

OLgroup

= OLgroup

full \ Rgroup

Intra-group SIO:

OPgroup
m,n = Pgroup

m ◦ OLgroup

◦ (Pgroup
n)−1 ⊆ Sm × Sn

Transitive closure not guaranteed to be quasi-affine; when necessary, use over-approximation14

14 [VCB11]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 19 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal Statement Ordering Semantics F

Complete pairwise SIO:

OPm,n =
(
OPthread

m,n ∩ TGID
m,n ∩ T LID

m,n

)
∪
(
OPgroup

m,n ∩ TGID
m,n

)
∪
(
OPglobal

m,n

)
⊆ Sm × Sn,

Dependency check:

Dm,n

?
⊆ OPm,n

TGID
m,n maps all instances of m to all instances of n assigned to same work-group

T LID
m,n maps all instances of m to all instances of n assigned to same work-item

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 20 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Dependencies and Program Linearization

Linearizer: Convert unordered statements into fully ordered program

Traditional polyhedral scheduling

Obey all deps and minimize objective function

Expensive; opaque to user

Instead

Avoid enumerating all possible orderings

Guide linearization w/ coarse-grained
representation of deps: statement DAG15

Full deps form graph on statement instances

Report dependency violation

Sm Sni.
0

1

2

3

4

DAG
edge

dependency

15 DAG formation details in Section 3.2.2 of [dissertation]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 21 / 60

https://jamesdstevens.com/index.php/media/

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal, Enforceable Loop Nest Structure Semantics

Within bounds of correctness, program order is
performance concern

Key ordering concern: nesting structure of loops

Affects performance: cache, TLB hit rates
Loop structure may be prerequisite for transformation,
e.g., vectorize

for i

for j

for k

...

for g

...

for h

for r

...

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 22 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Formal, Enforceable Loop Nest Structure Semantics

Nesting constraint properties: well-defined, ‘survive’ transformations,
enforcible, concisely express ‘innermost’

Must-nest set of loop pairs Cm and must-not-nest
set Cn satisfied by program w/nesting pairs N if:

Cm ⊆ N ∧ Cn ∩ N = ∅

“Innermost”: Cn = (k ,¬k)

for i

for j

for k

...

for g

...

for h

for r

...

Details in Appendix 3 of presentation and Section 3.2.3 of [dissertation]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 23 / 60

https://jamesdstevens.com/index.php/media/

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: FD Wave Equation Solution F

Finite Differences Solution to the
Wave Equation with Diamond Tiling

utt = c · uxx

ux,t+1 ux+1,t+1
ux+2,t+1

ux+1,t+2

ux+1,t

t

x

Make kernel

knl = lp.make_kernel(...)

Specify dependency

dep = make_dep_map(

"{ [t’, x’] -> [t, x] : "

" (t = t’ + 2 and x = x’) or "

" (t = 1 + t’ and x’ - 1 <= x <= x’ + 1) }",

self_dep=True, # Statement depends on itself

knl_with_domains=knl) # Provide kernel w/ relevant loop domains

knl = lp.add_dependency_v2(knl, "stmt", "stmt", dep) # stmt <- stmt

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 24 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: FD Wave Equation Solution F

Diamond tiling transformation w/map from current indices to new indices:

transform_map = isl.BasicMap(

f"""

{{[t, x] -> [tt, tparity, tx, itt, itx]:

{tile_sz}*(tx - tt) - {tile_sz//2} + itx - itt = x - t and

{tile_sz}*(tx + tt + tparity) - {tile_sz//2} + itt + itx = x + t and

0 <= itx - itt < {tile_sz} and 0 <= itt + itx < {tile_sz} and

0 <= tparity < 2 }}

""")

knl = lp.map_domain(knl, transform_map)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 25 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: FD Wave Equation Solution F

tt

0

1

2

t

x

0 0

0 0 0

1 1

1 1 1

2 2

2 2 2

0

1

2

0

1

0

1

0

1

tparity

t

x

0 0

1 1 1

0 0

1 1 1

0 0

1 1 1

0

0

0

t

x

1 2

0 1 2

1 2

0 1 2

1 2

0 1 2

0

0

0

tx 0 1 2

t

x

itt

itx

Transformed loop indices
for diamond tiling

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 26 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: FD Wave Equation Solution F

0 10 20 30 40 50
x

0

10

20

30

40

50

t

Correct loop nest:
(tt, tparity, tx, itt, itx)

0 10 20 30 40 50
x

Incorrect loop nest:
(tx, tt, tparity, itt, itx)

0 10 20 30 40 50
x

0

500

1000

1500

2000

W
rit

e
or

de
r

Incorrect loop nest:
(tt, tparity, tx, itx, itt)

Access pattern visualization showing index write orders in solution array

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 27 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: FD Wave Equation Solution F

t

x
tx (g.0) 0 1 2

1 2

0 1 2

1 2

0 1 2

1 2

0 1 2

0

0

0

t

x

itt

itx (l.0)

Parallelize tx across groups; add barrier

knl = lp.tag_inames(knl, {"tx": "g.0"})

knl = lp.add_barrier(knl,

within_inames=frozenset(["tt", "tparity"]),

synchronization_kind="global", ...)

Parallelize itx across work-items within group

knl = lp.tag_inames(knl, {"itx": "l.0"})

knl = lp.add_barrier(knl,

within_inames=frozenset(["tt", "tparity", "itt"]),

synchronization_kind="local", ...)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 28 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: FD Wave Equation Solution F

Add constraints on loop nest structure

Add constraints on loop nest structure

knl = lp.constrain_loop_nesting(knl, must_nest="tt,tparity,itt")

Check for dependency violations

Linearize kernel

lin_knl = lp.get_one_linearized_kernel(lp.preprocess_kernel(knl))

Find any dependency violations

unsatisfied_deps = lp.find_unsatisfied_dependencies(lin_knl)

View transformed dependency

Print dependency

print(knl.id_to_insn["stmt"].dependencies["stmt"][0])

[..., tt’, tparity’, tx’, itt’, itx’] -> [..., tt, tparity, tx, itt, itx]: ...

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 29 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: FD Wave Equation Solution F

Tile Wall Time Bandwidth Bandwidth
nx nt Width (ms) GFLOP/s (GB/s)16 % of Peak

36896 36896 64 43.3 617.7 251.0 38.5
40992 40992 64 52.8 625.3 254.1 38.9
45088 45088 64 63.7 627.7 255.1 39.1

36928 36928 128 42.8 629.8 253.9 38.9
41024 41024 128 48.8 681.6 274.8 42.1
45120 45120 128 55.2 729.5 294.1 45.1

36992 36992 256 39.0 694.7 279.0 42.7
41088 41088 256 43.8 762.2 306.1 46.9
45184 45184 256 50.0 809.4 325.0 49.8

Performance of transformed kernel on Nvidia Titan V GPU
Theoretical peak bandwidth (GB/s): 653 Peak 32-bit GFLOP/s: 12,288

Op/mem. stats gathered using counting mechanisms discussed in next section
16 Lower bound calculated using footprint of accessed data

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 30 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: LU NAS Parallel Benchmark F

Lower-Upper Symmetric Gauss-Seidel NASA
Advanced Supercomputing Parallel Benchmark17

· Each Newton step, solve Ax = b
w/SSOR

· A = M − N; M = (1/ω)Ḋ + L;

N = (1/ω − 1)Ḋ − U

· Each SSOR step:
block-{lower,upper}-triangular solveSimulated CFD application

Successive over-relaxation to solve block-diagonal system from FD
discretization of Navier-Stokes equations in 3-D

Six 5 × 5 off-diagonal blocks, three left, three right

do k = kst, kend

...

do j = jst, jend

! Form lower triangular part of Jacobian

call jacld(j, k)

! Compute lower triangular solution

call blts(..., j, k)

end do

...

end do

Demonstrated subcomponent of LU benchmark

18

Wavefront access pattern
17 [JFY99] 18 [JFY99]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 31 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: LU NAS Parallel Benchmark F

Loopy ingests Fortran subroutines

Over 500 unique dependency pairings in JACLD+BLTS; examples:

Create dependency map for BLTS usage of JACLD results

dep_ijk_eq = make_dep_map(

"[... { [i_jacld’, j’, k’] -> [i_blts, j, k, m] : " # Map space

"i_blts = i_jacld’ and j = j’ and k = k’ }", # Constraints

knl_with_domains=knl)

Create dependency map for BLTS usage of result at previous k index

dep_k_incr = make_dep_map(

"... { [i_blts’, j’, k’] -> [i_blts, j, k, m] : " # Map space

"i_blts = i_blts’ and j = j’ and k = k’ + 1 }", # Constraints

knl_with_domains=knl)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 32 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: LU NAS Parallel Benchmark F

Create mapping from current indices to indices in wavefront ordering

transform_map = isl.BasicMap(

"[jend, kend] -> "

"{ [j,k] -> [wave, wave_inner] : wave = j + k and wave_inner = j }")

knl = lp.map_domain(knl, transform_map)

Ensure no loop nests outside ’wave’ loop

knl = lp.constrain_loop_nesting(knl, must_not_nest="~wave, wave")

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 33 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: LU NAS Parallel Benchmark F

Parallelize diagonal wave front across work-groups

knl = lp.tag_inames(knl, "wave_inner:g.0")

Add barrier after last statement in BLTS, within wave loop

(keeps groups synchronized in lock-step)

knl = lp.add_barrier(knl,

within_inames=frozenset(["wave",]), synchronization_kind="global",

insn_before="id:s69_write_v_ijk_blts", insn_after=None)

... # (further transformation)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 34 / 60

Contributions Formal Dependency Verification and Loop Nesting Semantics in Loopy

Experimental Results: LU NAS Parallel Benchmark F
Domain Width Wall Time Bandwidth Bandwidth
nx = ny = nz (ms) GFLOP/s (GB/s)19 % of Peak

224 501.0 20.5 72.3 11.1
256 662.3 23.2 82.0 12.6
288 847.5 24.2 91.4 14.0
320 1060.5 28.4 100.4 15.4

Nvidia Titan V GPU
Theoretical peak bandwidth (GB/s): 653 Peak 32-bit GFLOP/s: 6,144

Examples demonstrated:

How dependency representation is exposed to user

Automatic transformation of deps as transformations applied

Dependency, program order semantics enable violation detection

Expression, enforcement of precise constraints on loop structure

Ingestion of complex, application-level benchmark
Application of semantics therein

19 Apply different perf. model than stencil example: model each access as it happens

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 35 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

A Mechanism for Balancing Accuracy and Scope in
Cross-Machine Black-Box GPU Performance Modeling

Publication: [SK20]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 36 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Goal

Model, interpret, predict execution times in an automated,
architecture-independent fashion

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 37 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Approach

Model execution time, or any kernel feature, as user-defined function of
kernel features and parameters

Twall(n) = featout(n) ≈ g
(
featin

0 (n), . . . , featin
j (n), p0, . . . , pk

)
n: (Runtime-constant) domain size parameters

featin
i (n): Count of quantitative kernel characteristic

(e.g., number of 32-bit floating point multiplications)

pi : Machine-dependent parameter relating features to exec time,
found by fitting model to microbenchmark data

g : Function provided by user; differentiable w.r.t. parameters

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 38 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Summary of Methodology and Results

Three workload cost categories, sums of features weighted by cost params:

cgmem: global memory access
con-chip: on-chip work, i.e., local/scratchpad memory access and arithmetic
coverhead: barrier, kernel launch, and work-group launch costs

Linear model:
t ≈ coverhead + cgmem + con-chip

Nonlinear model: Introduced approach to model overlap of on-chip and
global memory operation costs

t ≈ coverhead + cgmem · ŝ(cgmem − con-chip) + con-chip · ŝ(con-chip − cgmem)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 39 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Summary of Methodology and Results

ŝ(x) = (tanh(pedge · x) + 1)/2

≈ s(x) =

{
0 if x < 0

1 if x ≥ 0

pedge : regulates “abruptness” of step; determined with other params

t ≈ coverhead + cgmem · ŝ(cgmem − con-chip) + con-chip · ŝ(con-chip − cgmem)

≈ coverhead + max(cgmem, con-chip)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 40 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Modeling Overlap of Local, Global Memory Transactions

Measured

Predicted

Table displays the geometric mean of relative error (%). Array size differs across GPUs.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 41 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Summary of Methodology and Results

Evaluation:

DG, matrix-matrix multiplication, finite differences computations

3 computations, 5 GPUs, 6.4% geomean relative error

Predictions correctly rank all variants by execution time in 13/15 cases

Demonstrated insight into computation cost gained from modelling
(see [SK20])

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 42 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Matrix Multiplication Model Accuracy

Variant TiV TiX K40 2070 Fury

PF 3.0 2.6 7.4 6.0 14.1
NoPF 18.0 3.7 0.2 3.6 9.3

Mean 7.3 3.1 1.1 4.6 11.5

Prefetch No prefetch

Measured Predicted

Table displays the geometric mean of relative error (%).

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 43 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

DG Differentiation Model Accuracy

Variant TiV TiX K40 2070 Fury

PFdm 3.6 8.6 13.3 3.3 0.4
PFdmT 29.1 12.4 12.3 18.5 19.8
PFu 2.8L 19.1 9.4L 16.9L 4.5
NoPF 4.2 6.0 2.3 15.8 13.2

Mean 5.9 10.5 7.7 11.3 4.5

No prefetch Prefetch diff mat

Prefetch u Prefetch diff matT

Measured Predicted

Table displays the geometric mean of relative error (%). TElement data transposed. LLinear model used (otherwise nonlinear).

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 44 / 60

Contributions Customizable Cross-Machine Black-Box GPU Performance Modeling

Finite Differences Model Accuracy

Variant TiV TiX K40 2070 Fury

16x16 1.6 10.1 14.8 20.2 4.5
18x18 14.0 12.2 3.4 2.1

Mean 4.7 11.1 7.1 6.4 4.5

16x16 18x18

Measured Predicted

Table displays the geometric mean of relative error (%).

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 45 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

A Visual User Interface for
Code Transformation, Analysis, and Optimization

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 46 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Motivation

Composing transform chain is technical and
involves experimentation

Goal: Make this easier and more interactive

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 47 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Related Work

PUMA-V20

Clint21

DIODE22

Related work details in Appendix 6 of presentation and Section 5.1.1 of [dissertation]

20 [PML+16, PLM+19] 21 [ZHB14], [ZHB18] 22 [BNdFLZ+19]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 48 / 60

https://jamesdstevens.com/index.php/media/

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Building on Related Work

Our approach:

Fine-grained search space w/ integrated stats, transform info

FLOP/s, mem. throughput, exec. time

Transform via direct source manipulation (without manual editing)

Representation already understood
Observations of source often impetus for transformation

Easy deployment of (maintainable) transformed result

Inherits advantages of Loopy system, representation

Related work details in Appendix 6 of presentation and Section 5.1.1 of [dissertation]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 49 / 60

https://jamesdstevens.com/index.php/media/

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Key System Criteria F

C-level source code,
transformation code should
not be manually written

Reduce development time,
errors; focus on higher-level
decisions

Approach:

Describe program intent with high level math

Use Loopy’s automated source code generation

Transform via direct source interaction without manual coding

Deploy source and (maintainable) source-generating transform script

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 50 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Key System Criteria

Navigable search space of
program variants

Compare multiple optimization
paths

Reason about performance
consequences

Approach:

Fine-grained, interactive space
including performance stats,
transform info

Stats: Exec. time, FLOP/s,
memory throughput

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 51 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Evaluation of Design Objectives

Immediacy of Interaction with C-level Source Code

Lower action counts for transformation via direct code manipulation

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 52 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Segregated Transform Menu and Direct Code Manipulation

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 53 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Evaluation of Design Objectives F

v : variant ct

v∗: unhidden

variant ct

Scalability w.r.t. Variant/Line Count

Collapse segments to reduce action
count scaling factor: O(v∗)� O(v)

Collapse source code blocks
O(l∗)� O(l)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 54 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Evaluation of Design Objectives

Applicability to Programs In Situ

from app import LoopyUIApp

LoopyUIApp(initial_kernel=knl, open_browser=True)

Reproducibility of Experiments

Save, reload complete search space of program variants

Deployability to Production Code

Deploy full transformation script

Enables further modification of transform chain

Deploy source code

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 55 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Evaluation of Design Objectives F
Research Goal Function Action Count

Immediacy of interaction
with the code

Bring arbitrary non-hidden code element into view O(l∗) · q + p
Unhide arbitrary previously hidden code section O(l∗) · q + 2p
Once the relevant code element is in view:

Apply tag-iname transform via segregated input form 8 · (pIOVR + s) + 2t
Apply tag-iname transform via code manipulation 5 · (p + s) + t
Apply split-iname transform via segregated input form 7 · (pIOVR + s) + 2t
Apply split-iname transform via code manipulation 4 · (p + s) + t

Immediacy of interaction
with the search space

Bring arbitrary non-hidden kernel node into view (2p + s) · O(v∗)
Once the relevant kernel node or set of nodes is in view:

Select non-hidden kernel node p + s
Unhide a hidden subset of search space represented by proxy node p + s
Display parent transform details for non-hidden kernel node p
Display previously gathered statistics for non-hidden kernel node p
Hide contiguous section of search tree bounded by k kernel nodes 2(pIOVR + s) + k · (p + s)

Collect statistics for selected code variant 2(pIOVR + s) + t

Reproducibility of
experiments

Save search space 2pIOVR + s + t
Load saved search space 2pIOVR + 3s

Ease of deployability
to production code

Deploy Python script 2pIOVR + s + t

p: Position action; s: Select action; t: Text action; q: Quantify action; (Action types commonly counted in HCI23)
pIOVR: Independent-of-visual-representation position action;
l : Lines of source code in selected variant pre-actions; l∗: Non-hidden lines of source code in selected variant pre-actions (l∗ ≤ l);
v : Number of variants pre-actions; v∗: Number of un-hidden variants pre-actions (v∗ ≤ v);

Action counts required to perform selected UI functions
(starting in worst scenario, e.g., target in a list always requires typing to bring into view)

23
[FVVD+96]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 56 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

A Real-World Use Case F

Optimize kernel presented in [KWW16]

Computes volume term in semi-discretization of Euler’s equations in
weather model

Complex transformation chain

Kernel fusion, vectorization, prefetching, parallelization, more
50 statements; 125 transformations (14 different kinds)

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 57 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

A Real-World Use Case F

Wall Time Bandwidth Bandwidth
Nq Ne (ms) GFLOP/s (GB/s)24 % of Peak

8 6910 0.8 761.3 552.1 84.6
8 13820 1.5 795.5 576.9 88.4
8 20730 2.2 810.5 587.8 90.0
8 27640 3.0 818.3 593.4 90.9
8 34550 3.7 822.1 596.2 91.3

Performance of (optimization level 8) kernel for different numbers of elements
Peak 32-bit GFLOP/s: 12,288 Theoretical peak bandwidth (GB/s): 653

24 Lower bound calculated using footprint of accessed data

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 58 / 60

Contributions A Visual User Interface for Code Transformation, Analysis, and Optimization

Loopy UI F

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 59 / 60

Summary

Summary of Key Contributions F

Programming System Semantics

Human-comprehensible, verifiable,
statement-instance-level deps

Novel procedure for verifying correctness
of generated prog. in generalized OpenCL
comp. abstraction w/local, global barriers

Linearization proc. using coarse-grained,
statement-level ordering heuristic

Human-comprehensible, enforceable,
loop-nesting semantics

Black-Box Performance Modeling

Broad customization of
mathematical model not
available in previous work

Broad customization of set of
measurement computations
used to calibrate model

Automated gathering of precise
pre-compilation, parameterized
operation counts, kernel features

Hardware-agnostic modeling
Transformation UI

Navigable search space representation w/integrated transform, perf. info

Transformation via direct code interaction Applicability to program ‘in situ’

Deployment of modifiable transformation, generation script

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography I

Peter Adshead, John T. Giblin, Mauro Pieroni, and Zachary J.
Weiner, Constraining axion inflation with gravitational waves across 29
decades in frequency, Phys. Rev. Lett. 124 (2020), 171301.

, Constraining axion inflation with gravitational waves from
preheating, Phys. Rev. D 101 (2020), 083534.

Cédric Bastoul, Code generation in the polyhedral model is easier than
you think, PACT’13 IEEE International Conference on Parallel
Architecture and Compilation Techniques (Juan-les-Pins, France),
September 2004, pp. 7–16.

U. Bondhugula, V. Bandishti, and I. Pananilath, Diamond tiling:
Tiling techniques to maximize parallelism for stencil computations,
IEEE Transactions on Parallel and Distributed Systems 28 (2017),
no. 5, 1285–1298.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography II

Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and
Olivier Temam, Putting polyhedral loop transformations to work,
LCPC’16 International Workshop on Languages and Compilers for
Parallel Computers, LNCS 2958 (College Station, Texas), October
2003, pp. 209–225.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and
P. Sadayappan, A practical automatic polyhedral parallelizer and
locality optimizer, SIGPLAN Not. 43 (2008), no. 6, 101–113.

Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo
Schneider, and Torsten Hoefler, Stateful dataflow multigraphs: A
data-centric model for performance portability on heterogeneous
architectures, Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (New
York, NY, USA), SC ’19, Association for Computing Machinery, 2019.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography III

Ian J. Bertolacci, Catherine Olschanowsky, Ben Harshbarger,
Bradford L. Chamberlain, David G. Wonnacott, and Michelle Mills
Strout, Parameterized diamond tiling for stencil computations with
chapel parallel iterators, Proceedings of the 29th ACM on
International Conference on Supercomputing (New York, NY, USA),
ICS ’15, Association for Computing Machinery, 2015, p. 197–206.

V. Bandishti, I. Pananilath, and U. Bondhugula, Tiling stencil
computations to maximize parallelism, SC ’12: Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012, pp. 1–11.

Chun Chen, Jacqueline Chame, and Mary Hall, CHiLL: A framework
for composing high-level loop transformations, Tech. report, Citeseer,
2008.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography IV

Nicholas Christensen, High Performance Discontinuous Galerkin with
Grudge, (in progress) (2021).

Nicholas J. Curtis, Kyle E. Niemeyer, and Chih-Jen Sung, Using simd
and simt vectorization to evaluate sparse chemical kinetic jacobian
matrices and thermochemical source terms, Combustion and Flame
198 (2018), 186 – 204.

Isuru Fernando, Automatic Synthesis of Low Complexity Translation
Operators for the Fast Multipole Method, (in progress) (2021).

James D Foley, Foley Dan Van, Andries Van Dam, Steven K Feiner,
John F Hughes, Edward Angel, and J Hughes, Computer graphics:
principles and practice, vol. 12110, Addison-Wesley Professional, 1996.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography V

Tobias Grosser, Armin Groesslinger, and Christian Lengauer,
Polly—performing polyhedral optimizations on a low-level intermediate
representation, Parallel Processing Letters 22 (2012), no. 04, 1250010.

François Irigoin, Pierre Jouvelot, and Rémi Triolet, Semantical
interprocedural parallelization: An overview of the pips project,
Proceedings of the 5th International Conference on Supercomputing
(New York, NY, USA), ICS ’91, Association for Computing Machinery,
1991, p. 244–251.

Haoqiang Jin, Michael Frumkin, and Jerry Yan, The openmp
implementation of nas parallel benchmarks and its performance, Tech.
report, Citeseer, 1999.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography VI

Dominic Kempf, René Heß, Steffen Müthing, and Peter Bastian,
Automatic code generation for high-performance discontinuous
galerkin methods on modern architectures, 2018.

Andreas Kloeckner, Loo.Py: Transformation-based Code Generation
for GPUs and CPUs, Proceedings of ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array
Programming (New York, NY, USA), ARRAY’14, ACM, 2014, DOI:
10.1145/2627373.2627387, pp. 82:82–82:87.

, Loo.Py: From Fortran to Performance via Transformation
and Substitution Rules, Proceedings of the 2Nd ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for
Array Programming (New York, NY, USA), ARRAY 2015, ACM,
2015, DOI: 10.1145/2774959.2774969, pp. 1–6.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

http://doi.acm.org.proxy2.library.illinois.edu/10.1145/2627373.2627387
http://doi.acm.org/10.1145/2774959.2774969

References

Bibliography VII

Kaushik Kulkarni, UFL to GPU Near the Roofline, (in progress)
(2021).

Andreas Klöckner, Lucas C. Wilcox, and T. Warburton, Array program
transformation with loo.py by example: High-order finite elements,
Proceedings of the 3rd ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming (New
York, NY, USA), ARRAY 2016, ACM, 2016, DOI:
10.1145/2935323.2935325, pp. 9–16.

U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, A survey of
performance modeling and simulation techniques for accelerator-based
computing, IEEE Transactions on Parallel and Distributed Systems 26
(2015), no. 1, 272–281.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

http://doi.acm.org/10.1145/2935323.2935325

References

Bibliography VIII

Christophe Mauras, Alpha: un langage équationnel pour la conception
et la programmation d’architectures parallèles synchrones, Ph.D.
thesis, L’Université de Rennes 1, December 1989.

Benoit Meister, Allen Leung, Nicolas Vasilache, David Wohlford,
Cédric Bastoul, and Richard Lethin, Productivity via automatic code
generation for pgas platforms with the r-stream compiler, Workshop
on Asynchrony in the PGAS Programming Model, 2009.

Souley Madougou, Ana Varbanescu, Cees de Laat, and Rob van
Nieuwpoort, The landscape of gpgpu performance modeling tools,
Parallel Computing 56 (2016), 18 – 33.

Benoit Meister, Nicolas Vasilache, David Wohlford,
Muthu Manikandan Baskaran, Allen Leung, and Richard Lethin,
R-stream compiler., 2011.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography IX

Louis-Noel Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen,
R. Ramanujam, and P. Sadayappan, Hybrid Iterative and
Model-Driven Optimization in the Polyhedral Model, Research Report
RR-6962, INRIA, 2009.

E. Papenhausen, M. H. Langston, B. Meister, R. A. Lethin, and
K. Mueller, Puma-v: Optimizing parallel code performance through
interactive visualization, IEEE Computer Graphics and Applications 39
(2019), no. 1, 84–99.

E. Papenhausen, K. Mueller, H. Langston, B. Meister, and R. Lethin,
Puma-v: An interactive visual tool for code optimization and
parallelization based on the polyhedral model, 2016 New York
Scientific Data Summit (NYSDS), 2016, pp. 1–4.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography X

James Stevens and Andreas Klöckner, A mechanism for balancing
accuracy and scope in cross-machine black-box gpu performance
modeling, The International Journal of High Performance Computing
Applications (2020), 589–614.

Tianjiao Sun, Lawrence Mitchell, Kaushik Kulkarni, Andreas Klöckner,
David A Ham, and Paul HJ Kelly, A study of vectorization for
matrix-free finite element methods, The International Journal of High
Performance Computing Applications 34 (2020), no. 6, 629–644.

Sven Verdoolaege, Albert Cohen, and Anna Beletska, Transitive
closures of affine integer tuple relations and their overapproximations,
Proceedings of the 18th International Conference on Static Analysis
(Berlin, Heidelberg), SAS’11, Springer-Verlag, 2011, pp. 216–232.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography XI

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio
Gómez, Christian Tenllado, and Francky Catthoor, Polyhedral parallel
code generation for cuda, ACM Trans. Archit. Code Optim. 9 (2013),
no. 4, 54:1–54:23.

Tomofumi Yuki, Vamshi Basupalli, Gautam Gupta, Guillaume Iooss,
D Kim, Tanveer Pathan, Pradeep Srinivasa, Yun Zou, and Sanjay
Rajopadhye, Alphaz: A system for analysis, transformation, and code
generation in the polyhedral equational model, Colorado State
University, Tech. Rep (2012).

Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and
Sanjay Rajopadhye, Alphaz: A system for design space exploration in
the polyhedral model, Languages and Compilers for Parallel
Computing (Berlin, Heidelberg) (Hironori Kasahara and Keiji Kimura,
eds.), Springer Berlin Heidelberg, 2013, pp. 17–31.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Bibliography XII

O. Zinenko, S. Huot, and C. Bastoul, Clint: A direct manipulation
tool for parallelizing compute-intensive program parts, 2014 IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2014, pp. 109–112.

Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul, Visual
program manipulation in the polyhedral model, ACM Trans. Archit.
Code Optim. 15 (2018), no. 1, 1–25.

Huihui Zhang, Anand Venkat, Protonu Basu, and Mary Hall,
Combining Polyhedral and AST Transformations in CHiLL,
Proceedings of the Sixth International Workshop on Polyhedral
Compilation Techniques, IMPACT, vol. 16, 2016.

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

References

Additional Image Sources

Introduction: [1], [2], [3]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Computer_simulation

Appendix Loopy’s Model of a Kernel

Loopy’s Model of a Program

Unordered list of statements, which operate on multidimensional arrays

Assignment to array entry; RHS expression containing arithmetic, function calls
Parameterized by set of loop variables: inames
Executed once per integer point in iteration domain defined by domain forest for inames
Function calls may return tuples
Loopy defines callable functions; additional funcs may be defined
Assignments may be atomic; recursion not permitted

Arrays

n-D array shape defined by n-D tuple of expressions

Affine in size parameters, which are fixed during execution

Argument (accessible outside prog.); temporary var. (live only in prog.)

Domain Forest

Made of domains, sets defined by conjunctions of inequalities of quasi-affine expressions of
parameters or inames

Domains may have parent domains

Enable imperfectly nested and data-dependent loops
Domain without parent: parameters passed as program arguments, fixed during execution
Domain with parent: params may be inames from parent, or scalar, integer temp vars
written by statements within domains defined by parent domain

More info in documentation, and [Klo14], [Klo15], and [KWW16]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

https://documen.tician.de/loopy/ref_kernel.html

Appendix Loopy Applications

Examples of Successful Loopy Application

Loopy’s efficacy in enabling high-performance transformation and code generation
demonstrated in multiple previous and in-progress applications:

For cross-element 25 and intra-element 26 vectorization in Firedrake, automated
system for portable solution of PDEs using finite element method

For intra-element vectorization in Dune PDE software framework 27

For solving PDEs using finite differences method in PDE solving framework
Pystella 28

For chemical kinetics in pyJac 29, code-generating utility for analytically
calculating chemical kinetics Jacobian matrices

For solving PDEs using discontinuous Galerkin30 (DG) method in Grudge, an
unstructured, high-order, parallel DG solver, which is being used to facilitate
high-performance scramjet simulations 31

For automatic synthesis of translation operators for fast multipole method 32

25 [SMK+20] 26 [Kul21] 27 [KHMB18] 28 [AGPW20a, AGPW20b] 29 [CNS18]
30 31 [Chr21] 32 [Fer21]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Loop Nest Semantics Details

Loop Nest Structure Semantics (further details)

Within correctness constraints, program order is
efficiency concern

Key ordering concern: nesting structure of loops

Affects efficiency: cache, TLB hit rates
Loop structure may be prerequisite for transformation,
e.g., vectorize

Previous Loopy: loop-structure semantics not
expressible/enforceable

for i

for j

for k

...

for g

...

for h

for r

...

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Loop Nest Semantics Details

Loop Nest Structure Semantics (further details)

Need loop nest structure requirements that:

Are well-defined

Can be expressed concisely without exhaustively
defining full structure

Can express ‘innermost’

‘Survive’ transformations

Can be checked and enforced

for i

for j

for k

...

for g

...

for h

for r

...

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Loop Nest Semantics Details

Loop Nest Structure Semantics (further details)

Express loop nesting structure of linearized program as
set N of all nesting pairs (i , j) s.t. loop j nests inside i

N = {(i , j), (i , k), (j , k), (i , g), (h, r)}

Must-nest constraint set of pairs Cm and
must-not-nest constraint set Cn satisfied if:

Cm ⊆ N ∧ Cn ∩ N = ∅

for i

for j

for k

...

for g

...

for h

for r

...

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Loop Nest Semantics Details

Loop Nest Structure Semantics (further details)

Constraint compactness for efficient storage, input, reasoning:

Single nesting tier may contain set of loops; must-nest tuples may
contain > 2 tiers

(I1, I2, · · · , In) = {iµ, iν : µ < ν, iµ ∈ Iµ, iν ∈ Iν}

In must-not-nest constraints, complement sets allowed

Cm = (i , {j , k}, g) = {(i , j), (i , k), (i , g), (j , g), (k , g)}

Cn = (k,¬k) = {(k , i), (k, j), (k , g), (k , h), (k, r)}

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Performance Modeling Details

Performance Modeling Process Overview

User input

1. Create model
Perflex

2. Generate

measurement

kernels

3. Gather feature values

for measurement

kernels

4. Fit model

5. Predict

Model()

UIPiCK

filter tags

measurement kernel set

model

expression

gather_feature_vals()

m-knl feature values fit_model()

model

features

parameters

model param values

kernel eval_with_kernel()

generate_kernels()

output feature

(e.g., exec. time

estimate)

Step

[SK20]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Transformation Interface

Transformation Interface Design Objectives

Jointly optimize:

Immediacy of interaction with source

Immediacy of interaction with search space

Reproducibility of experiments

Search tree and associated metadata

Ease of deployability without loss of information

Ease of applicability to in-situ computation

Scalability w.r.t. transformation count, program size

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Transformation Interface

UI Action Counting

Quantitative, objective metrics for assessing research goals

Actions33:

Position*, Select, Text, Quantify
*Introduce positionIOVR: independent of visual representation

Scaling factors related to program, search space sizes

33 [FVVD+96]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Transformation Interface

IR-Source Toggling with UI Application Example

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Related Work Details

Transformation Framework Related Work (further details)

CHiLL34

Source-to-source; C, C++, Fortran

Automatically generated data
dependencies

Scripting language is stateful,
single-pass, w/ inflexible addressing

DaCe 35

Stateful DataFlow multiGraph IR expresses
data deps, high-level control flow

Manipulate via graph transformations

Oriented around data flow graph rather
than memory, statements

Details in Section 3.1.1 of [dissertation]

34 [CCH08], [ZVBH16] 35 [BNdFLZ+19]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

https://jamesdstevens.com/index.php/media/

Appendix Related Work Details

Transformation Framework Related Work (further details)

AlphaZ 36

Express program as
Alpha37 expressions

No representation of
state or execution order

Transformations, array storage specified via multidimensional affine
mappings

Powerful; exert fine-grained control

Nontrivial, error-prone tasks

Details in Section 3.1.1 of [dissertation]

36 [YGK+13], [YBG+12] 37 [Mau89]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

https://jamesdstevens.com/index.php/media/

Appendix Related Work Details

Performance Modeling Related Work

Related work reviewed in Section 9 of [SK20]

Two surveys of current GPU performance modeling landscape38

Existing GPU performance models predict well for particular application
or architecture, but not easily portable
Most require (manually gathered) architecture or application info
Significant effort to construct, use

(Non-analytical) learning/statistical techniques more hardware-flexible

Less user-accessible design, interpretability
Assumptions/limitations about predictive power, fidelity,
program/hardware scope less clear

No significant control over model expression or benchmark design

Details in [SK20] and Section 4.1.1 of [dissertation]

38 [MVdLvN16], [LNMMA15]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

https://jamesdstevens.com/index.php/media/

Appendix Related Work Details

UI Related Work (further details)

Clint39

Source-to-source, extracts polyhedral rep. using Clan40

Manipulate visualization of iteration domains to transform

Uses Cloog41 to generate C w/OpenMP pragmas

1-D history extremely limited, no performance stats
User must learn to interpret/use geometric visualization

Diagram limited in scope

Transformation via source limited to manual code editing
Code interaction has benefits; possible without manual editing?

Representation already understood
Observations of source often impetus for transformation

39 [ZHB14], [ZHB18] 40 [BCG+03] 41 [Bas04]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Related Work Details

UI Related Work (further details)

PUMA-V42

Expose internal transformation
process, heuristics of R-Stream43

Select (boilerplate) ‘tactic’ from list

Apply transformations via multiple
geometric visualizations

Measure execution time

Generate C code, outer loops automatically parallelized OpenMP

Relies on geometric visualizations for transformation
No interaction with source code

History/search space not comprehensive
Tactics only, course-grained
Stats (exec. time only) not integrated with tree

42 [PML+16, PLM+19] 43 [MVW+11], [MLV+09]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

Appendix Related Work Details

UI Related Work (further details)

DIODE

Expose Statement DataFlow
multiGraph (SDFG) IR used by DaCe44

Select transformation from list

Select components from SDFG to enter
transformation parameters and
properties

Source code not interactive

1-D, course-grained history excluding
transformation property adjustments

44 [BNdFLZ+19]

James Stevens University of Illinois at Urbana-Champaign July 2, 2021 60 / 60

	Preface
	
	Introduction
	Contributions
	.9Formal Dependency Verification and Loop Nesting Semantics in Loopy
	.9Customizable Cross-Machine Black-Box GPU Performance Modeling
	.8A Visual User Interface for Code Transformation, Analysis, and Optimization

	Summary
	References
	Appendix
	Loopy's Model of a Kernel
	Loopy Applications
	Loop Nest Semantics Details
	Performance Modeling Details
	Transformation Interface
	Related Work Details

